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Who was Alexander Miers Macgregor?

* His achievements are too numerous to list here!
* Bornin London on 28 July 1888 and died in Bulawayo on 20 October 1961.

* Went to school at West Minister School and Cambridge University, where he
obtained a Masters in Geology.

* His first appointment was a geologist at the Bulawayo Museum in 1912.

* In 1916 he served in the First World War until 1918 where he obtained a rank of
Lieutenant.

* He leftthe Museum in 1916 and Joined Geological Survey in Harare (Salisbury).



A snapshot of His achievements

* He worked on fossils, hard rock geology and
exploration geology with Anglo American
Corporation.

* From 1946 to 1948 Dr. Macgregor was director of the
Geological Survey.

* Upon retirement he served as a Geologist on the
staff of Messrs Keir and Cawder in 1950, and with
William Baird and Co. during 1951.

* |In 1954 he was engaged by the Anglo American
Corporation to start their Geological office in
Salisbury (Harare), a post which he retained until
1956.




Awards and Scientific Membership

 Draper Memorial Medal 1947- Presented by the Geological
Society of South Africa.

* Doctor of Science - Awarded by Natal University College
1947 on a thesis consisting of his numerous published works
on Zimbabwean Geology (Southern Rhodesian Geology).

* Dr MacGregor was a member of the following societies:
Geological Society of London; The South African Association
for the Advancement of Science; Mineralogical Society of
London; Rhodesian Scientific Association and Geological
Society of South Africa.

* He was President of the South African Association for the
Advancement of Science Section B. 1950; South African
Geological Society 1950 and Rhodesian Scientific
Association, 1946-47.




http://de.wikipedia.org/wiki/Galileo_Galilei

» Like the Telescope in 1608 — Telescopes changed the way we see
starry objects....

Galileo Galilei (1564-1642) investigated the Moon and concluded
“that this body was Earth-like”. He was the first to describe craters
on #=~Moon, and he noted the Galilean Moons and he made Jupiter
and his Moons a model for the heliocentric system. In “Dialogo” he
compared the Ptolemean and Copernican world views and added
several barbs against the Pope. Lifelong house-arrest and prohibition
of further publications followed.

»Zircon changed Geology
tremendously....and enhanced its
understanding

http://www.scienca.de/wiki/Galileo_Galilei



http://de.wikipedia.org/wiki/Galileo_Galilei
http://www.scienca.de/wiki/Galileo_Galilei

The second half of the 17"
century must be credited to
Johannes Kepler, Isaac
Newton (1643-1727) and
Edward Halley (1656-1742).
Kepler: elliptical orbits,
celestial mechanics
Newton: laws of gravitation,
refinement of orbital
determination, calculation
of planet masses.

Halley discovered 24 comets
/ calculated orbits.

The structure of the planetary
system was finally understood,
some 2000 years after Aristotle.




The Solar System structure was understood after about
200 years after Galileo who invented the Telescope

The jovian planels




Geological Theories: Cataclysm Theory/
Catastrophism

1. ABiblical flood shaped the surface of the Earth
2. Fear of comets triggered the Cataclysm Theory (1750)

Comte de Buffon, 1745: The planets were formed from a mass
ejected from the Sun hit by a vast comet.

Comte de Cuvier (1769-1832) is credited with the thought that the
Great Flood was only the last of a series of catastrophes on Earth — as
evidenced in the geology and fossil wealth around Paris. He
determmed six mass extlnctlons, each followed by new proliferation

Georges Cuvier http://de.wikipedia.org/
wiki/Lord_Byron

- from: D. Steel, Target Earth


http://de.wikipedia.org/

Uniformitarianism and Actualism
(Modern Geology)

James Hutton
(1726-1797)

In Britain, the uniformitarianist school was developed: Charles Lyell
and his Principles of Geology in 1830

They did not require catastrophes to develop geology or life - but
time!

James Hutton and von Hoff added the actualist principle! They and
Lyell showed that it would take eons to develop the geology they saw
on the British Isles and elsewhere.

The Present is the Key to the Past!



Dynamic Earth - Continental Drift

Already individuals like Francis Bacon (1561-1626),
Abraham Ortelius (in 1596), the Comte de Buffon (18"
century), and Alexander von Humboldt (1796-1859)
had ideas about continents breaking apart.

http://de.wikipedia.org/wiki/Sir_Francis_Bacon http://de.wikipedia.org/wiki/Alexander von Humboldt



Only around 1910 did
Alfred L. Wegener (and
F.B. Taylor) espouse the
theory of Continental
Drift, whereby continents

come together and drift
apart.

Problem: “Continents

dont just plough through
the ocean floor!“



In South Africa, Alex L. Du Toit
was a principal follower and
exponent of the new
Continental Drift theory.
Despite much ridicule!

5. Geologische Argumente 73

DaB die Falklandsinseln, obwohl sie sich vom patagonischen
Kilstenschelf erheben, keine geclogische Verwandtschaft mit Pata-
gonien, wohl aber mit Stidafrika zeigen, betrachtet du Toit mit
Recht als eine besondere Stiitze der Verschiebungstheoriel).

Abb. 18
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Frithere relative Lage Siidamerikas und Afrikas nach du Toit

Ich muB gestenen, daB die Lektiire von du Toits Buch einen
auBerordentlichen Eindruck auf mich gemacht hat, da ich eine so

1) Ich gestehe, daB mir die von du Toit in Abb. |8 angenommene
Position der Falklandsinseln in der Rekonstruktion mit Hinblick auf
ihre heutige Lage und die Tiefenkarte des Stidatlantik doch bedenklich
erscheint. Ich wiirde sie in der Rekonstruktion eher siidlich als westlich
vom Kap der Guten Hoffnung setzen; doch ist dies eine Nebenfrage,
die gewiB einmal durch die weitere Forschung gekldrt werden wird.

from: Alfred Wegener, Die Entstehung der Kontinente
und Ozeane, 4™ edition, 1929, p.73



http://geology.asu.edu/resources/museum/dietz.htm

1940s: First voices conc. Impact (Daly, Baldwin, Dietz)
and possible link with mass extinction
1960s: Magnetics and Geochronology

Sea-floor spreading
Not until geophsgics and geochronology had developed
the tools for understanding of the Earth’s dynamic
interior in the 1960s could the revolutionary Plate
Tectonic Theory, based on the concepts of continental
drift and heat convection, be developed.
Age (dating) of magnetic stripes and changes in polarity




Tectonic Plates-evidence from magnetic stripes on
the ocean floor

2 Million Years

0 Million Years 1 Million Years

\

[ '
| 3

Seafloor spreading begins Earth's magnetic field flips and seafloor Earth's magnetic field flips again
polarity reverses forming a new stripe of normal
polarity seafloor

. Normal Polarity D Reversed Polarity

hmrndiﬁn

platw
baundaries

lllustration by Dennis Tasa, Tasa Graphic Arts, Inc. |
From The Earth: An Introduction to Physical Geology, 5th Edition
Edward J. Tarbuck, Frederick K. Lutgens, © 1996 by Prentice-Hall, Inc.
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The understanding of mountain building, crust subduction, earthquake
and volcanism in relation to plate interaction opened up an entirely new
perspective on geoscience. This 1960s plate tectonics revolution must
be considered as fundamental as the change from cataclysmic to
gradualistic/actualistic theory of the early 19*" century.

Tuzo Wilson was the greatest advocate of Plate Tectonics via systematic
geophysical study of the ocean floor, earthquakes and volcanism (1963)

Merapi, Indonesia, 2006
Reuters News Agency
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History of
Age Dating

with Zircon

* In 1907, Boltwood was the first person to
come up with an estimate of the U-Pb decay
constant of 10-10/yr which compares well
with our current figure of 1.5x10-10/year

* Thus he measured samples that were 422 my
and 2200 my.

* Innovation = Insight (light bulb moment) +
Societal Value

* (e.g., Dunlop, Faraday, Pasteur, Flemming
e.t.c.)

* After this discovery, geologists realized the
value of Zircon in geological processes-that it
could unlock long lived events.

08/11/2024
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1. Its a handle in Plate reconstructions, geological
evolution of mobile belts and allows us to select areas
suitable for exploration of various mineral deposits-
each with its specific setting

* 2. Atoolto date granites/gabbros and volcanic rocks to

Why ZirCOn understand intra-plate magmatism.
Geochronology? * 3. Atoolto unravel what happens in subduction

processes, volcanic and continental arcs

* 4. Atoolto be used in the detailed assessment of
mineral deposit fertility: an example from the Damara,
Gariep and Kaoko belts

5. Used to date the age of the Solar System and comets
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nternal structure of the Earth-the liquid core
roduces Earths’ magnetic field.




. . . . ’
Late Cambrian-Mid Silurian-comparisons-

using species to unravel continental
Cambrian I Ore | Sul l De. ICarbamlem,sl veml Trias I Juras l cvmceousl Cenozon Collisions and dispersals

VAN * Late Cambrian- gradual increase
e in species (we had a

- supercontinent)

1

' o * Mid Silurian-Devonian-maximum
| .

Q V/A 570@9 @ — g,[go. number of species-

Figure 3 - Correlation between number of invertebrate families and time and with continental fra gmentation

fragmentation and assembly: numbers increase at fragmeniation and decrease with assembly. The
continents are schematically depicted as segments of a circle: (a)=Gondwanaland; (b)=Laurasia;
(c)=North America;, (d)=South America; (e)=Eurasia; (f)=Africa; (g)= Antarctica; (h)=India;

(i)=Australia. (A) represents Pangaea; (E) Reassembly of Pangaea, (F) Opening of Tethys Sea; (G) o Trl a SS I C- d ro p I n S pe C I e S-

Closing of Tethys Sea, opening of Atlantic, breaking up of Gondwanaland (Condie, 1982)
assembly.
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Figure 1.4 Distribution of world earthquakes 1961-1969. From National Earthquake Information Center Map NEIC-3005.

Earthquake distribution is not chaotic-showing that plates actually do

Mmove



Dominant processes though Earth’s
development —how can we unravel them?

- Early Earth - chemical and density differentiation
- Bornbardment and Moon collision/extraction (Hadean)

- Plurne and/or subduction dominated processes (Paleo/Mesoarchean)
- Plate tectonics (dominated in Paleoproterozoic, possibly Neoarchean)

FLATE
FLATE
PHERE

gy



Table of the naturally occurring elements.

A radiogenic nuclide is a nuclide that is produced by a
process of radioactive decay. It may itself be radioactive (a
radionuclide) or stable (a stable nuclide). Radiogenic nuclides
(more commonly referred to as radiogenic isotopes) form
some of the most important tools in geology

Radioactive (parent)

H Radiogenic (daughter) He
Li | Be . Radiogenic and radioactive B| C|N|]O| F|Ne
Na | Mg Al Si| P|S | Cl|Ar

K | Ca Sc|Ti |V | C|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge| As|Se | Br | Kr

Rb|Sr | Y |Zr [INb|Mo|Tc |Ru|Rh|Pd|Ag|Cd| In | Sn|Sb|Te | I |Xe

Cs|Ba|La|Hf | Ta|W|Re |Os| Ir | Pt | Au| Hg| Tl Pb_

Ce |Pr INd |[Pm|Sm| Eu |Gd|Tb | Dy |Ho | Er | Tm| Yb | Lu

Th U




U is the largest Naturally
occurring

Element

It is radioactive

Used for energy purposes

One of the few geologic
clocks we use

Is always present in the

Mineral ZIRCON and
Baddeleyite




THREE COMMONLY OCCURRING
RADIOACTIVE ELEMENTS IN ROCKS AND SOILS

« Uranium ( U0, ) — has a decay series

- 98.27% occurs as 435U
- 0.72% occurs as 2%°U (used in reactors)
- 0.0057% occurs as 434U

« Thorium ( ThO, ) — has a decay series

« Potassium ( K;0 ) — no decay series, single isotope

08/11/2024
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TEMPERATURE RANGE OF THERMOCHRONOMETERS

- Cosmogenic isotopes (’Be, “Al, “C)
B U-Th (He) apatite
FT apatite
[] U-Th (He) zircon
] U-Th (He) titanite

- Ar-Ar biotite
[ Fr titanite
B Rb-srbiotite

- Ar-Ar muscovite

U-Pb apatite [ |
U-Pbrutite [ |
Ar-Ar hornblende [ |
U-Pb titanite [ ]
Sm-Nd garnet

Th-Pb monazite -
U-Pb zircon

| | Rb-Sr muscovite

100 200 300 400 S00 600 700

800 (°C)




METRHODOLOGY- Pick rocks that contain zircon
grains-felsic, in mafic we can use baddeleyite




Crush the rocks in a swing mill and extract
zircons (time of milling Is important)




METHODOLOGY—p‘iCk thg\zircons\_and analyse
' ‘ ‘:f i: “ | ) ‘T ' .' '1;1'
| Al ] | _E
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What is Zircon (Zr, U, REE)2SiO4 and Baddeleyite [Zr(U, Th)O2]

Once formed it is resistant to heat; erosion and metamorphic processes

238) —P Wepp, AP =), =1.55125x 101"
BSy —» Wpp 3PP =},=9.8485x107"°

B2, — P W8pp,  APTh=),=49475x 10"

2381) 1 235) = 137 88

08/11/2024 34



Temperature (z 50° C)

The power of the zircon crystal-thermometry (after

Puppin, 1980)-nature’s gift to man
At this time we used to dissolve the whole zircon grain for dating

o o BN M TR W * The shape of the zircon is also an
o e e iy e e indication of the temperature at
w G Q| O || |ee b which it formed andlc&omposition—
R e S R e important in mineral deposits
o0 @ @ 0|18 |0 |0 @% @ “ " studies
| O (]| A =" o Better pyramids indicate higher
@m @a @sz @sa @* st @ V. . Al/(K+Na) ratio- Tectonic setting
=~ $ 1010|0000 Q| indicators
o | s * Betterprismsindicate higher
_@g @@ @@ @@ @® @® @n@ @m: o temperatures of formation
° @ @ 100 |0]|0 @ wwa y * [ndex A reflects the ratio
"B s | o | A E A controlling the development of
= Q16 0100|000 |=~=_ zirconpyramids, whereas
W T B b R R v temperature affects the
-§10/8/6/0/0/0/0] development of zircon prisms.
Al(Na + K) (index A)

08/11/2024 35



magrnatically
resoroed =

27

composite resorbed,:
- cadliflower zircon -



Jack hills zircons(Froude et al, 1983-Nature vol 304, 616-618) some of
the oldest rocks on Earth. The story of Zircon is the story of life on Earth

3649+5




Texture and
evolution of

Zircon grains

Recycling and
cratonization-
zircons can be
recycled several o0s5s 15KV Soun
times, overgrown in
different geologic
environments-
Interpretation

x4@8 @E4a8 15SkY 1808un x3 oe@4q 1SkV 180um




and age in geological evolution
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SHRIMP Resolution (after Jodie Miller, 2008)-

Recycling via magmatism, sedimentation, magmatism and
metamorphism

Cowra Granite
Grain 16

206pp,238()
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Formation of Oceanic & Continental Crust

Oceanic Crust Continental Crust
First 4.6 billion years 4.4 billion years ago
Appearance |ago
Where Ocean ridges Subduction zones
Formed

Composition |Komatiite & basalt | Tonalite-Granodiorite

Lateral Extent | Widespread Locally developed
Mechanism of | Partial melting of Partial melting of wet
formation ultramafic rocks in mafic rocks in descending

the upper mantle slabs




Applications: How we use Zircons in Mineral

Exploration

Diamonds do not form in Mobile belts (too warm and not dense enough)-
zircon in cratons- we prefer low to med temp for diamond fertility

Resistivity at 40 km (~Moho)

100,000
50,000
-30.000
10.000

5000
3000
1000
500

diamond
stability fiel

- 3 Lithosphere A

/N !N A (SSL
—

100-250 km

400 km
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Spitzkoppe Granite (A-type) came up as the Atlantic Ocean was opening
(dated at 132 Ma)

b 4

10°E 15°E 20°E 25°E AE as’E 40°E

s

*****

[ 5’5

10°8

10°8

16'8 155

25'8 25°g

Overirnted of concealed
Mescproterozoic orogen
‘5}‘ i - Mesoproterazoic orogen
=1/ | i} Patecoraterozoic orogen | 30°S
[ Paisoproternzoic craton
[ Archean orogenic belt

- Archean craton 95°'g
~. siructural trend

10°E 15°E 20°E &HE HE IAE 40°E

Fig 2 Map of major geologic provinees and Precambrian orogenic belts in southen Africa.
Compiled after Goscombe & al (2000} and Hanson (2003 ),
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Crustal differentiation, melt generation and melt
migration-lessons from zircons

* Continents represent the cycles of repeated differentiation- inherited zircons in
granites.

* Mineral Deposits signatures occur in these igneous and metamorphic processes

* Dense oceanic crust gets recycled in the Upper Mantle, while less dense felsic crust
is upwardly stratified by a combinations of geological and tectonic processes- we
see resorbed magmatic zircons.

* Anything more felsic than basalt will accrete uniquely in magmatic arcs above
subduction zones

* However, true felsic crust of granite composition, requires repeated and multiple
differentiation events to reach the average composition of continents- complex
zircons that have undergone several metamorphic and granite episodes are
common



Crustal Evolution:
the tectonic framework for ore




Formation of continental crust and its evolution over the geologic history
(after Hawkeswaorth. 1987)

‘/’(]Drystallization of
ost granites
L .
80+
Zircon
] crystallization
60+ M ages
o ' :
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= ; : Crust formation ages
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Mapani et al., 2014

You can add value on your
interpretation by looking at
zircon grains

012
C HW4 Brack Amphibolite Gneiss
Po-Po age for fwe older grams
011 ¢ (shaded) 1782 £ 31 Ma
1800
E - —]
¥ 18 points omitting older spots 9 & 50
010+ 5 Intercepts 1758 + 23 & 139 + 840 Ma
L MSWD 0.12, Probability 1.0
b
Mean Pb-Pb age
an 18 peints
0.09 - 1756 £ 10 Ma
MSWD 0,13
Ll probability 1.0
0.08 r
0.07 ; " : . . 1000
2.5 3.5 4.5 bb

08/11/2024

HW2a Gocheganas Megacrystic Gneis

HW4 Brack Amphibolite Gneiss

4 100 microns

5=

HWG6 Seeis Granitic Gneiss

100 microns
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One zircon under different observation environments. RF gives us the surface and
a thin upper layer morphology of zircon; CL allows us to go into the inside of the
zircon, BSE gives us a good understanding of the U/Pb ratios of different zones

2-CL 3-CL 4-BSE



Can we guess
how the zircon
grains will look In
these 5 rocks.

Note patterns of
an increase in

HREEs (HW2a)
and reduction in
LREEs and a
suture sample
with almost a
constant REEs
pattern

1000

100 7 -

sample / chondrite
=

Lla Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 6. Rare Earth Element profiles for Hohewarte Complex samples, showing the
unusual profile for Gocheganas Megacrystc gneiss sample HW2a, probably related
to metasomatic alteration. Sample RNS3 i1s a Hindus Suture Zone plagiogranite of
Rao et al. (2004}, shown for comparison with sample HW4 which has a similar
normative compaosition.



Beauty of
Zircon- you
can obtain Hf-
Lu ratios

On the same grain where you obtain the U-Pb ratios, you can
quantitatively obtain the the Hf-Lu ratios as well.

Hf and Lu give us another dimension in unravelling continental
crust evolution.

We use the Hf/Lu ratios from zircons to fully understand the
evolution of the rock-Lu is preferred in the Mantle and Hf
fractionates more in crustal rocks.

Therefore, with episolon Hf, we assess the time when a rock
from the mantle was brought into the crust.

That age tells us the geological event | that occurred rise to the
fractionating of Hf.
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|Isotopes and their use in continental crust
formation

* Firstly, zircons form in magmatic rocks of felsic in composition
(granites, rhyolites, rhyodacites, tonalites, granodiorites)-rare zircons
occur in basic rocks (mostly baddeleyite)

* Zircons are resistant to weathering and can be recycled in sedimentary
rocks over many cycles.

* By doing Zircon petrography, we can assess or tell its story

* Therefore, when we date them(U-Pb), we find the age of crystallisation
of granite or felsic rock or metamorphic ages as rims on previously
existing zircons

* Altered zircons reveal LREE abundance especially in long residence
crystals



Zircon Thermometry (after Watson et al., 2006; Contr. Min. Pet.,
151; 413-433)

35

* Titanium in zircon geothermometry
is a technique used to estimate the S
crystallization temperature of

. 25 4
zircon crystals.

* \We measure the amount of 20 -

titanium in the zircon lattice. e

Log (Ti, ppm)

e Titanium replaces zirconium and
silicon atoms in the crystal i
structure, and its incorporation is
largely influenced by

05 =

temperature—significantly 00 -
increasing with higher
temperatures—while being mostly 05 T T T T T 1

unaffected by pressure. 0 emperature ¢ 0 o



How do we know that the continental crust is juvenile or is not mixed
with sedimentary material?

* For this we use a combination of isotopes.

* 1. Sm/Nd isotopes: Nd indicates whether the rock was derived
from the crust or mantle.

* Rocks with high Nd values are from the mantle

* La and Rb are high in crustal rocks and therefore Rb/Sr and Nb/La
ratios can tell us about the origin.

* High Sr87/Sr86 is common to crustal rocks (above 0.6900).

* We use the Hf/Lu ratios from zircons to fully understand the
evolution of the rock-Lu is preferred in the Mantle and Hf
fractionates more in crustal rocks.



Zircon ages U-Pb; Lu-Hf; Pb-Pb in combination with geochemistry of
rocks can allow us to trace the evolution of continental crust
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Example 1: Re-organisation of the Stratigraphic Column

REpE T6756] [ | Cover
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s 2.7Ga
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RESULTS

* MORB-normalised spider diagrams
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* Dark green is the Barby
Formation in the North

* Age: 1336 Ma

* Light green is the Barby
Formation in the south

* Age: 1217 Ma
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Tectonic Evolution
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:] Cenozolc cover (Kalahar Supergroup)
Geological domains

[T 7] Karoo Supergroup

im Foreland of the Damara Orogen on the Kalahari Craton

i | Foreland of the Damara Orogen on the Congo Craton

| Damara Supergroup and Pan-Alrican orogenic intrusive rocks
L Ghanzi-Chobe Belt (Ghanzi Group and Kgwebe Formation)
g the Sinclair
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NEW FINDINGS

SINCLAIR GROUP

3rd CYCLE

1st CYCLE 2nd CYCLE

AUBORUS Felspathic sandstone

FORMATIO and conglomerate
unconformity

ROOIBERG GRANITE

GUPERAS

FORMATIO

NUBIB GRANITE

BARBY

FORMATION

HAREMUB G

NAGATIS hyolitic lava, ash flow tuff,

FORMATION agglomerate, basic lava, arkose,
shale

KUMBIS Adamellite, amphibolite,, gneiss,

FORMATION basic and felsic lavas.

Unexposed basic intrusives and
extrusives?

2nd CYCLE 3rd CYCLE

1st CYCLE

Volcanic and sedimentary
rocks

Cenozoic cover

Nama Group

Intrusive and metamorphic
rocks
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(swarms not shown)
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~1200 Ma ? Namaqua Province
metamorphic rocks

1204 £ 9 Ma Tiras Granite-Gneiss
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<1304 Ma Kunjas Fm

'C 13379 Ma N. Barby Fm

1334 Ma Nubib Gram

1340 Ma Rooiberg Granite
/
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1353 Ma Haremub Granite

- 1363 Ma Nagatis Fm

1369 Ma Kumbis Fm
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The Damara, Gariep and Kaoko Belts - Fertility for metal
deposits-The power of Zircon in mineral discovery
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Gondwana at 530 Ma and distribution of Sediment Hosted
type deposits
~ 530 Ma
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Formation of continental crust and its evolution over the geologic history
(after Hawkesworth, 1987) has followed 250 Ma cycles
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Example 1-Damara belt-identification of fertile crust
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Damara belt units with different types of
Zlrcons or no zircon!




Gondwana at 750 Ma and its dispersal and assembly of
Pangea
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Fig. 2. Map of major geologic provinces and Precambrian omgenic belts in southern Africa.
: 5 s Compiled after Coscombe et al [ 2000) and Hansan (2003 ),

Hg. 1. Map of Gondwana {after Cray et al, 2006} showing the locations of Pan-African

arogenic belts in southem Africa. RP, Rio de 1a Plata craton; SF Sao Frarscisco craton
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SUMMARY FOR CONGO AND KALAHARI
CRATONS

Damara Sequence detrital zircons
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* A nearly 1050-1000 Ma detrital
zircon population in the Congo
strata is absent in the Kalahari
craton together with a 900-600
Ma detrital zircon population

Most abundant zircon grains from
Neoproterozoic strata on the Congo
mar%iln give ages of 1150-1000 and 800-
600 Ma

The most abundant grains on the
Kalahari craton margins range from
1350-1100 Ma.

A 1350-1200 detrital zircon population
is absent in the Congo strata

This means that in Rodinia, Congo and
Kalahari were not proximal and only
came together during the collision that
assembled Gondwana



Other Applications of Zircon geochronology,
scientific contribution to society

1. Crime control in the trafficking of uranium materials for enrichment (IAEA,
Vienna in conjunction with cooperating countries)

2. ldentifying sources of uranium in groundwater with a view to remediate and
protect communities (e.g., Hamutoko, Mapani and Ellmies, 2010) (Khan and
Swakop Rivers, Namibia)

3. You can take stable isotope ratios of zircons- they give you fluid evolution

4. Used in thermometry on the estimation the fertility of continents (First used by
Foster, Goscombe, Newstead, Mapani, Weber, Mueller and Muvangua, 2012)-
Damara Belt vs Congo and Kalahari Cratons collision

(beneficiaries- discovery of Osino Gold, discovery of Gergarub Deposit, Rosh
Pinah)



The power of zircon in forensic science-
fingerprinting sources of uranium and lead sources-
Namibian uranium mines examples (Madzunya et al.,
2021)
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Conclusions:

Zircons: the lessons we learn from them

* Collectively in Namibia, the Northern Foreland provenance contrasts
with that of correlative units in the Central Zone of the Damara Orogen,
where only two detrital zircon age peaks (1030 Ma and 2040 Ma) have
been identified (Foster et al., 2015).

* Zircon chemistry also shows that the Congo grains have favourable
0O18/016 ratios pointing to fluid activity- therefore fertility for metal
deposits is high.

* Field evidence shows that where conditions were moist, deposits
emerged, e.g., Rossing, Husab, Langer Heinrich, Navachab, Ondundu,
B2Gold (Otjikoto), Tsumeb, Berg Aukas, Kombat, Kuiseb Springs- all on
the Congo platform.

* The edge of the Congo has Cu ores such as Omitiomire, Onganga and
Mn at Otjosondu.

* The Kalahari Craton only has sedimentary type mineral deposits such
as Klein Aub Cu, Dordabis Cu and Ghanzi Cu in Botswana.



Kaoko belt a haven for field geology
Thank you
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