Machine learning models for the Kadoma-Chegutu greenstone belt using magnetics, radiometrics and mineral occurrences (minoccs) data

Tenyears Gumede KNOWLEDGE FACTORY

tenyearsgumede@gmail.com/tenyears@oneiricminerals.com

1September 2023

The Presentation

Introduction

Key Concepts

Models

Kadoma – Chegutu data and Models

Conclusions

Introduction

There is an ongoing digital revolution motivated by the data-driven scientific discovery paradigm.

Machine learning and artificial intelligence (AI) represent two of the trendiest and important topics in geosciences right now.

Machine learning in the interpreter's toolbox: Unsupervised, supervised, and deep-learning applications

Artificial Intelligence:" It is the science and engineering of making intelligent machines, especially intelligent computer programs." (John McCarthy)

Machine Learning: Machine learning is a branch of <u>artificial intelligence (AI)</u> and computer science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

Supervised Learning: the term "supervised" refers to a set of samples where both the desired output signals (label) and the predictive variables are already known.

Unsupervised Learning: The algorithm has no prior labeled data to learn from i.e., it learns from unlabeled data by finding patterns among examples and grouping them accordingly. The algorithm is provided with a large volume of data and expected to identify hidden patterns

<u>**Training Data:**</u> The training step is used to choose the bestsuited algorithm and combination of parameters for the classification problem

Validaton Data:

AI In Mineral Exploration

Advances in enormous computing power to effectively process and analyse massive amounts of data (Big Data)

Access to huge datasets (Big Data), making it difficult for Knowledge Driven Model

- Big data is a set of data that cannot be managed , processed, or analysed with traditional software/algorithms within reasonable amount of time
- It revolves around Volume, Velocity, Variety, Value , Veracity

(Walmart handles over one million purchase transactions per hour) (Facebook processes more than 250 million picture uploads per day)

Human bias from Interpretation

Find complex relationships between different datasets

Automation of tasks

Parallel computing, and cloud computing coupled with better computer hardware

Building complex geological models based on data

Dwindling rates of discovery in exploration in certain minerals

Supervised ML

Data is presented as plan maps – 2D Model cells

Cell size should represent well the data at scale of surveys while maintain the problem of reasonable size pertaining computational time

Labels are requiredfor the model to learn by associating them with the input data

In this problem, labels were generated using known mineral occurences/ existing mines

Training and Validation

Labeled data is portioned into training and validation datasets

The distribution of training and validation datasets are nearly equal

Model learn on training data and can be tested against a similar set of data

Machine Learning Models

Model Metrics

Traditional ML Classificaton models metrics are Precision, Recall and Accuracy

Accuracy

Precision

Recall

PYTHON LIBRARIES import key packages

import os

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import geopandas as gpd

import rasterio

import rasterio.mask

from rasterio.features import rasterize

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

import metrics

from sklearn.metrics import roc_curve, auc

from imblearn.under_sampling import RandomUnderSampler

- mineral occurrence point data -geopandas
- magnetic and radiometric data sets rasterio
- 2 Combine data sets to build a labeled N_pixel, N_layers array for model training

- inspect differences between proximal vs. distal to mineralisation pixels

- 3 Train using a **random forest classifier** and apply to all pixels, visualise results
- evaluate performance with a randomly selected testing subset
 repeat with stratified classes
- 5 Used a **checkerboard** data selection procedure, train and evaluate models
- 6 Investigate occurrence holdout models with a spatially clustered approach

Kadoma-Chegutu Greenstone Belts Datatsets

Geology data – Two ZGS Bulletins Cover the Area of Study (B64 and B34)

Geophysical Data - Airborne Magnetics that yielded the following deliverables:

- ✓ Total Magnetic Intensity (TMI)
- ✓ Vertical Derivative (VD)
- ✓ Analytical Signal (AS)
- ✓ Total Count Radiometrics (TC)
- Potassium Count (KC)
- ✓ Thorium Count (ThC)
- ✓ Uranium Count (UC)

Mineral Occurrence (Minoccs) Data from B64 and B34

Other Probable Datasets that are available but at a course Spacing (Differing Resolutions)

✓ Gravity Bouger Maps
✓ ? Stream sediment Data (ZGS)

	Lat	Long	GID	Х	Y		Name	COMMODITYS	geometry
0	29.882463	-18.014840	1	805224.3564	8005796.740	NaN	M.I.B	Au	POINT (805224.356 8005796.740)
1	29.881301	-18.040077	1	805057.7159	8003003.623	NaN	D.P.D.	Au	POINT (805057.716 8003003.623)
2	29.890845	-18.039077	1	806070.6590	8003098.687	NaN	ADRIATIC	Au	POINT (806070.659 8003098.687)
3	29.893419	-18.038326	1	806344.6487	8003177.560	NaN	CUTLET	Au	POINT (806344.649 8003177.560)
4	29.892883	-18.039255	1	806286.2276	8003075.515	NaN	STELLA	Au	POINT (806286.228 8003075.515)
5	29.891632	-18.040542	1	806151.4414	8002935.065	NaN	GLOUCESTER	Au	POINT (806151.441 8002935.065)
6	29.901498	-18.039077	1	807199.2896	8003081.005	NaN	TORY	Au	POINT (807199.290 8003081.005)
7	29.901605	-18.038004	1	807212.5159	8003199.598	NaN	TIMES	Au	POINT (807212.516 8003199.598)
8	29.908397	-18.037790	1	807932.4952	8003212.045	NaN	DIKER	Au	POINT (807932.495 8003212.045)
9	29.914152	-18.037289	1	808543.1434	8003257.870	NaN	MELTON	Au	POINT (808543.143 8003257.870)

df.tail(10)

	Lat	Long	GID	Х	Y		Name	COMMODITYS	geometry
96	29.838123	-18.045917	1	800473.2251	8002427.658	NaN	H.W.J.	Au	POINT (800473.225 8002427.658)
97	29.843616	-18.040231	1	801064.9247	8003048.402	NaN	ESMA	Au	POINT (801064.925 8003048.402)
98	29.852529	-18.040347	1	802009.0058	8003021.089	NaN	SISTER MARRY	Au	POINT (802009.006 8003021.089)
99	29.860443	-18.045341	1	802838.9041	8002455.020	NaN	SUNDOWN	Au	POINT (802838.904 8002455.020)
100	29.873890	-18.041153	1	804270.6507	8002896.688	NaN	GOLDEN GLADE	Au	POINT (804270.651 8002896.688)
101	29.878538	-18.040155	1	804764.8705	8002999.648	NaN	JODOL	Au	POINT (804764.870 8002999.648)
102	29.889948	-18.025364	1	805999.3402	8004618.885	NaN	ROSS	Au	POINT (805999.340 8004618.885)
103	29.888604	-18.025863	1	805856.0046	8004565.798	NaN	BABY	Au	POINT (805856.005 8004565.798)
104	29.855910	-18.035506	1	802375.4628	8003551.651	NaN	WELCOME FRIEND	Au	POINT (802375.463 8003551.651)
105	29.925177	-18.031856	1	809720.7821	8003841.138	NaN	SAN TOY	Au	POINT (809720.782 8003841.138)

Load the 2D model data using the Rasterio Library

data, names = [], []
for fn in geotiffs:
 with rasterio.open(fn, 'r') as src:

O

transform = src.transform
region = (src.bounds.left, src.bounds.right, src.bounds.bottom, src.bounds.top)

d = src.read(1).astype('float')
nodata_mask = d == src.nodata
d[nodata_mask] = np.nan
append data to lists
data.append(d)
names.append(os.path.basename(fn).replace('.tif',''))

stack list into 3D numpy array
data = np.stack(data)
data.shape, names

Thomas Ostersen etal

Convert the minnocs point data into a raster map using the rasterise library

import modelling modules

from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split

generate train and testing subsets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=420)

1.0

CHECKERBOARD -

K-MEANS -

RANDOM FOREST -

SIMPLE VECTOR MACHINE -

geometry_generator = ((geom, c) for c, geom in zip(df.labels, df.buffer(250).geometry))
clustermap = rasterize(shapes=geometry_generator, out_shape=data[0].shape, fill=0, transform=transform).astype('float32')

clustermap[nodata_mask] = np.nan

plt.imshow(clustermap)

CONCLUSIONS

While implementing various machine learning applications, it became apparent that quality controlling the outcomes plays an important role not only in building confidence in the algorithm but also in addressing two scepticisms: (1) the concern that machines will replace humans and (2) concern over black-box-type algorithms.

A 98% accuracy is attained using the k-means clustering to train and test model