# Copper in the Central Zone of the Limpopo Belt: the Messina and the Mutandahwe mines



CIMERA — OST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis Linda laccheri School of Geosciences

linda.laccheri@wits.ac.za



## Acknowledgments

This research is possible thanks to:

- Dr Humbulani (Rejune) Mundalamo (University of Venda)
- Mr Khethani Tom Ramphabana (PhD student, University of Venda)
- Miss Dimakatso Hlahla (MSc student, Wits)
- Miss Kulani Mahori (Honours student, Wits)
- Mr Dale Lambert
- Dr Tony Martin
- Mr Tenyears Gumede

# Nuanetsi Igneous Province

- situated in the south-eastern corner of Southern Zimbabwe
- marks the intersection of the Limpopo lineament with the volcanic monocline of the Lebombo



# The Limpopo Belt

Records collision of Kaapvaal and Zimbabwe cratons into the Kalahari Craton at ca. 2.6 Ga

- Subdivided in 3 subparallel zones:
  - Northern
  - Central
  - Southern



# The Limpopo Belt

- Southern and Northern Marginal zones with cratonic evidence
- The Central Zone is the largest and shows structural complexity and high-grade metamorphic rocks

→ ENE/SWS LIMPOPO TREND



Kramers et al., 1998



# Central Zone – Limpopo Belt

- High-grade metasedimentary sequence (Mt DOWE GROUP and GUMBU GROUP)
- with interlayered quartzofeldspathic gneiss (MALALA DRIFTS Suite)
- and mafic rocks (MESSINA Suite)
- Famous exposures of the Sand River Gneiss at Causeway and Verbaard localities

## Messina Cu Mine District

HARPER

CAMPBELL

MESSINA

Mapped by Jens Jacobsen in the 1960s

ARTONVILLA

SPENCER

- Mining started in 1903 and ended in early 1990s
- Five main mines/shafts located along the Messina Fault with an ENE/SWS Limpopo trend
- Cu mineralisation within a hydrothermally-altered, highgrade metasedimentary sequences

# Messina Cu mineralisation

# 1. Within hydrothermal altered amphibolites



#### 2. Quartz-breccia pipes cutting through hydrothermally altered country rocks



# Geological mapping of the Artonvilla Mine area by Jens Jacobsen (1967)











Copper as malachite staining in amphibolite

no malachite staining in interbedded quartzites







malachite staining as alteration of bornite-quarzt veins crosscutting the country rocks

#### The rich-Cu mineralisation is related to breccia pipes: we want to have a closer look to them



#### Hunting for breccia pipes within the amphibolite unit

Colloform white quartz cementing amphibolitic breccia

#### Entrance workings #5

Surface expression of mineralisation in brecciated amphibolite





And in places pervasive chloritic/epidote alteration with malachite staining



Surface mapping shows the presence of another type of alteration: hematitisation of the more felsic units within country rock





Pervasive hematitisation leads to formation of what I call "hematitic caps" with ± epidote and quartz breccia pipes

Weak to no malachite staining





"hematitic caps" with formation of new specularite and epidotisation, with secondary quartz veining and weak malachite staining

> Complete mineralogical replacement and metasomatism of the country-rocks

# Messina Cu breccia pipe mineralisation recently exposed along the N1





Quartz breccia pipe shows pervasive malachite staining due to presence of bornite; and iron staining for alteration of hematite Brecciated chloritized and epidotised amphibolite cemented by white quartz in a quartzitic country rock





Late quartz-hematite veining with no evidence of Cu



- The Messina Cu deposit interpreted as a magmatic hydrothermal ore deposit
- The composition and age of the hydrothermal fluids are debated
- The proposed source of the magmatic hydrothermal fluids is the Nuanetsi Igneous Province



Bornite within secondary quartz

#### Nuanetsi Igneous Province

Seven late-Karroo ring complexes cutting a thick succession of Karroo lavas (basalts and rhyolites)



Collated images from Cox et al., 1965 and Wilson et al., 1998

## Mutandahwe Complex



- near circular complex about 6-7 km in diameter
- comprises granophyres, quartz-syenites and granites
- shows evidence of a felsic volcanic phase associated with the granitic stage

# Mutandahwe Complex and its Mineralisations

- Last phases of magmatism associated with hydrothermal activity and emplacement of mineralisations
- **Cu** and **W** showings rim the granitic intrusion (Example, MUTANDAHWE Cu MINE; BUONA FORTUNA W Prospect)



• **Mo** mineralisations present within the pluton (Example, LAZENO Project)

## Mutandahwe Cu Mine







- During 1968-1977 two main shafts and three ventilation shafts were sunk and the mine was exploited to 5 level (128 m)
- Produced mainly Cu and minor W

# Mutandahwe Cu Mine

Sampling in May 2023 in the dump next to adit #183 FT





## Mutandahwe Cu mineralisation

Samples collected from mine dump record a mineralization mainly related to veining into a hydrothermally altered (chloritization and biotitisation) basaltic country rock:

1.Carbonatic veins without macroscopic evidence of sulphides2.Quartz-carbonate veins with sulphides3.Quartz-vein with sulphides

4.Veins and alteration of hosting basaltic rock

#### Mutandahwe Mine Carbonatic veins



Colloform, Crustiform carbonate 2 carbonate 3 Coarse-grained mosaic calcite



Mutandahwe Mine Carbonatic veins

Coarse-grained mosaic calcite

Colloform, carbonate 2

Fine-grained brecciated and chloritized basaltic host rock



#### Mutandahwe Mine quartz-carbonate veins with sulphides



Crack-seal, crustifom, carbonate 2 veining calcite

Massive quartz with disseminated chalcopyrite, minor pyrrhotite

#### Mutandahwe Mine quartz-carbonate veins with sulphides



Massive quartzcarbonate vein with disseminated fine-grained chalcopyrite Crustiform (crack-seal) carbonatic vein

> Massive chalcopyrite-pyrrothite adjacent to crustiform carbonates







Massive quartzcarbonate veins with chalcopyrite, pyrrhotite and minor pyrite





#### Mutandahwe Mine veining in basaltic host-rock



Subparallel quartzcarbonatic veins in a biotitised basaltic hostrock

Interstitial coarse-grained chalcopyrite

Subhedral/Euhedral quartz within pinkish and anhedral carbonates Fine-grained subhedral biotite reaction rim



Each vein shows a reaction rims of subhedral biotite at the contact vein/basaltic host rock Stockwork of fine-grained white quartz veining in fine-grained, altered biotite-rich basalt



# Future directions

- Dating:
- 1. mineralisation (Re-Os dating of sulphides)
- 2. alteration minerals
- 3. Host-rocks
- Fluids inclusions in quartz for characterising the composition of the mineralising fluids
- Detailed petrographic observations coupled with SEM elemental maps of mineralisation (perhaps presence of minor rare metals within sulphides/oxides/carbonates)

#### Mutandahwe Mo mineralisation –LAZENO Project



## References

- Cox et al., 1965
- Kramers et al., 1998
- Jacobsen, 1967
- Wilson et al., 1998