REVIEW OF THE KAROO SUPERGROUP IN THE ZAMBEZI VALLEY

Karoo sequence sedimentary and predominantly basic igneous rocks, accumulated fragmentation of Gondwana : Late Carboniferous – Early Jurassic . Preserved in basins in E + S Africa & SE South America. Max extent deposition, Early Permian, ±4.5 million km². Present outcrop Africa ±300,000 km².

KAROO SUPERGROUP-ZIMBABWE

Outcrops 1/3 country – three main locations:

 Zambezi Valley in N
 Save-Limpopo Valley in S
 Small, centrally located, Featherstone Outlier

CONTROL KAROO DEPOSITION

 Dominant factors tectonic activity and palaeo-climatic variation response NW drift relative North Pole - off NW Africa in Ordovician to SE continent in Triassic

Climatic Setting – Central & Southern Africa

Cretaceous:		Semi-Arid
Jurassic:		Semi- Arid
Triassic:	Late Early	Arid Semi-Arid
Permian:		
Carboniferous:	Late	Arctic \rightarrow Cold Temp

ZAMBEZI RIFT SYSTEM

- Mid- Zambezi, Lower Zambezi & Luangwa Rift Branches – failed triple junction
- Trends branches controlled reactivation reexisting structures
- Karoo top 1133m Chirambakadoma Hill indicates main uplift horst followed onset rifting during Triassic – Cretaceous times.
- Mobil (1993) reported stratigraphic ranges ±4,600m Mid-Zambezi to >12,000m in the Cabora Bassa basins.

KAROO: ZAMBEZI RIFT SYSTEM

Sinakumbe & Likupekupe

- Relationship arenaceous red-beds Devonio-Ordovician aged Sijarira Group with the similarly dated Sinakumbe Group in the Gwembe sub-basin in Zambia requires further investigation.
- Similarly linkage Ordo-Silurian aged Likupekupe Formation in W Zambia raises spectre Palaeozoic depositories with marine influence being present at depth.

Mid-Zambezi Basin

Mid-Zambezi Basin Axes

- Matabola / Gwembe / Mlibizi Sub-Basins
 NE-trending axes developed Late
 Permian > Upper Madumabisa and later times.
- Necessitates lows either side Chizarira and Kamaivi Horsts = Gwembe and Matabola Troughs and approaching N rift boundary = Sinazonwe Trough

ZRS: TECTONIC DEVELOPMENT

Divides Karoo Supergroup in two:

 Lower Karoo: Late Carboniferous – Late Permian / Early Triassic = Sag Basin ~ Low strain thinning lithosphere prior rifting

Upper Karoo: Early Triassic – Early Jurassic = Rifting

ZAMBEZI RIFT SYSTEM: TECTONIC DEVELOPMENT

Late Cretaceous – Tertiary: 4th Major Episode Rifting predating / associated EARS

Early Jurassic: 3rd Major Episode Rifting – Batoka Basalt Fm / Dande Fm

Middle Triassic: 2nd Major Episode Riffing – Pebbly Arkose → Forest Sandstone
Late Permian – Early Triassic: 1st Major

Episode Rifting – Chete Fm / Angwa Fm

LOWER KAROO GROUP

Permo-Carboniferous sediments laid-down cratonic sag basins, exhibiting subdued deformation, during arctic to warm temperate climatic interval.

 Substantial accumulations coal intercalated fluvial, deltaic, paludal and predom. shallow water lacustrine sediments

UPPER KAROO GROUP

• Following onset of rifting Early Triassic, as the climate warmed and became drier, sequence initially predominantly fluvial red beds then succeeded playa and aeolian sediments deposited semi-arid to arid settings

STRATIGRAPGHY

- Lithostratigraphic correlation due lack macro- and micro-fossil identification.
- Consequence tendency persists, despite the fact that lacustrine and rift basin facies are some of the most dynamic and complex sedimentary settings, to view the Karoo and younger rocks as non-diachronous 'layer-cake' deposits

TABLE 2: LITHOSTRATIGRAPHIC COLUMN MID-ZAMBEZI BASIN, ZAMBIA AND ZIMBABWE.

(Barber: In Press.)

Z A M B

LACUSTRINE TYPE & FACIES

OVERFILLED BASIN

BALANCED BASIN

UNDERFILLED BASIN

MEMBERS		DESCRIPTION		CLAY MINERAL COMPOSITION	FIELD EVIDENCE	DEPOSITIONAL ENVIRONMENT	GEOCHEMICAL FACIES
	k5f (±120m)	Alternating units thin, greenish, fine-grained sandstone and black-grey mudstone.		No samples investigated	Type locality flooded by Lake Kariba	Lacustrine. Hot semi-arid.	Neutral pH. Mild oxidising.
MUDSTONE (±210M)	k5e (±90m)	Poorly laminated, pale-green, marly m horizons ≤0.5m thick containing abund defining bedding. Frequency calcareou possess a distinct bituminous, oily odd The uppermost limestone beds are free debris.	ud- & siltstone with ant limestone nodules is units, which often ur, decreases upwards. quently rich in mollusc	Interstratified mica - smectite, forming 50% clay fraction, with some analcime	Abundant limestone nodules	Waning lacustrine. Hot semi-arid	Alkaline. Oxidising. Calc. Carbonate.
MIDDLE MADUMABISA MUDSTONE	k5d (±180)	Soft mudstone offering limited exposure, which weathers khaki-green, containing barite & Tender ironstone concretions and rare limestone beds. devoid Sedimentary structures not observed. Only identified E of Sub-basin. mopane	cy to form large, open, idulating grassy areas of trees, commonly as Sidaga Plains, which i sharply with the e covered areas	Very high smectite content, associated with mica, plagioclase & some analcime.	Barite spherolites & ironstone concretions. Nodules limestone rare. Palaeontological: Endothion Zone – Dadoxylon	Dry lacustrine. Warm temperate. Possibly associated with volcanic activity	Alkaline. Oxidising. Calc. carbonate.
(±290M) k5c (±110m) (±110m) k5c (±10m) k5c) (±10m) k5c) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m) (±10m)		Massive maristone and underla mudstone characterised by Upper I both bedded and Membe concretionary yellow, often cellular, limestone exhibiting cone-in-cone structures. Sandstone horizons developed locally	in by the Lower and fadumabisa Mudstone rs.	Dominated by kaolinite, associated with berthierite or smectite, mica and sporadic analcime.	Nodules limestone. Palaeontological; Tapinocephalus Zone.	Lacustrine. Temperate.	Alkaline. Mild oxidising. Calc. carbonate.
LOWER MADUMABISA MUDSTONE (±150M)	k5b	Medium to dark-grey, fissile, sideritic, carbonaceous mudstone containing impure coals, beds of pale, blocky matter Carbonaceous mudstone containing mudstone. impure coals, beds of pale, blocky mudstone. In the west of the Sub-basin significant horizons of sandstone, such as the Ridge Sandstone, are developed. Ît Pale grey-white mudstone containing sideritic pisolites / Carbonaceous mudstone with coal laminations / Impure, hypautochthonous commonly impure coal searns interbedded with carbonaceous mudstone. It		Uppermost beds, towards Ecca – Beaufort, kaolinite decreases in favour of mica & chlorite. Minor anatase and smectite.	Coal. Siderite.	Lacustrine. Cool temperate.	Mildly acidic. Reducing. Iron carbonate.
	k5a			Kaolinite associated with minor anatase & rare smectite	Coal. Siderite.	Lacustrine -Paludal. Cold temperate.	Acidic. Reducing. Iron carbonate.

MID-ZAMBEZI BASIN

UPPER KAROO GROUP

Chete Formation

- Fine Red Marly Sandstone Member (k8)
- Ripple Marked Flagstone Member (k7)
- Escarpment Grit Member (k6)

LOWER KAROO GROUP

- Matabola Formation
- Upper Madumabisa Mudstone Member (k5^{c-f})
- Lower Madumabisa Mudstone Member (k5^{α+b})
- Upper Wankie Sandstone Member (k4)
- Hwange Formation
- Black Shale And Coal Member (k2-3)
- Lower Wankie Sandstone Member (k1)

N S RD \triangleleft

Lower Karoo – Cabora Bassa

Two Formations:Kondo PoolsMkanga

Thickness exposed adjacent Chewore Horst: 1,000 – 1,500m

KONDO POOLS FORMATION

Unlikely freshwater turbidites – interpretation amalgamation dispersed observations limited exposures – but shallow water debris flow and fluvio-limno-glacial deposits:

- Rip-up clasts.
- Fossil plant-bearing laminations
- Wetland palynological indicators

 Overlain carbonaceous, coal-bearing Mkanga Formation conformably (Oesterlan, 1998) or across sub-parallel unconformity (Barber, 1993 & 2001; Mobil, 1993).

MKANGA FORMATION

Mudrocks range composition from:

 Basal dark black-grey, carbonaceous to coaly mudstones, containing thin coals, deposited over-filled basins with paludal margins.

to

 Medium green-grey mudrocks, low organic matter contents, containing calcareous intercalations and quartz pseudomorphs after calcite, gypsum and possibly halite, deposited under-filled basins during warm temperate to semi-arid climatic interval during the Late Permian or after.

END KAROO DEPOSITION

- Widespread volcanic activity mantle plumes generated decompression during lithospheric thinning.
- Isotopic dating indicates deposited ±5 million years, ±179 – 183 Ma, Early Jurassic.
- Ar⁴⁰/Ar³⁹ ages 179-180 Ma reported Jones et al. (2001) basalts Batoka Gorge.
- K/Ar datings NW Zim but ages, 179^{±9} -86^{±4} Ma indicate continued Jurassic and possibly into Cretaceous.

BASALT AGE DATES

END KAROO - ZIMBABWE

Difficult distinguish red-beds but sediments intercalated Cretaceous lavas Mana Pools visually different Dande Formation. If age corroborated could provide support either:

- Two deposition events accumulation Dande Fm, postulated cease Jurassic, followed Late Cretaceous sediments (Hurungwe Fm), or
- Deposition Dande Formation continued into Late Cretaceous.

Intercalated Dande Fm question Karoo or post-Karoo significant contains Late Jurassic dinosaur fossils correlated Gokwe Fm in Mid-Zambezi Basin.

As no regional marker horizons recognised sub-dividing Dande Fm unless invisible timeline imposed – necessitates extending age Karoo into Late Cretaceous. Failure render Batoka Basalt Formation post-Karoo necessitating sub-division.