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INTRODUCTION AND OUTLINE OF GEOLOGY

The Magondi Supergroup is a mainly metasedimentary succession, with minor mafic and
intermediate to felsic metavolcanics, which is found in the early Proterozoic Magondi
Mobile Belt of western Zimbabwe (Figs. 1 & 2). It is subdivided into the Deweras,
Lomagundi and Piriwiri groups, which were deposited between ca. 2.1 and 2.0 Ga (Pb-
Pb, Rb-Sr), and metamorphosed between ca. 2.0 and 1.8 Ga (Table 1, after Treloar,
1988). In addition, lithologies of the Dete-Kamativi Inlier of NW Zimbabwe are also part
of the Magondi Supergroup. The Magondi Supergroup is underlain by a Basement
Complex consisting of Archaean granite-greenstone terrain (including a calc-alkaline
magmatic arc succession) and gneisses of the Zimbabwe craton, and the earliest
Proterozoic Great Dyke and related complexes that are intrusive into the Archaean rocks.

The Deweras Group, which unconformably overlies the granite-greenstone terrain of
the Archacan Zimbabwe craton, comprises a redbed sequence, up to 1.3 km thick, of
meta-arenites, rudites, pelites and minor carbonates and evaporites, together with
enriched sub-alkaline mafic lavas and pyroclastic rocks. In the northern area, the
Deweras Group is subdivided into the Mangula, Norah, Suiwerspruit and Chimsenga
formations (Fig. 3). The Deweras Group was deposited in a continental strike-slip basin
(Fig. 4), which has been compared with the Dead Sea strike-slip system (Master, 1995).

The Lomagundi Group, which overlies the Deweras Group unconformably, is sub-
divided into three formations (Fig. 5). The Mcheka Formation consists of basal conglom-
erates, grits and quartzites, followed by stromatolitic dolomites, phyllites, pockmarked
quartzites, argillites and banded iron-formations.

The Nyagari Formation consists of striped slates, sandstones and intermediate volcanics,
while the Sakurgwe Formation consists predominantly of greywackes. The overlying
Piriwiri Group, which is considered the contemporaneous distal facies equivalent of the
Lomagundi Group, is subdivided into three formations (Fig. 6). The Umfuli Formation
consists of basal graphitic and pyritiferous slates with narrow bands of cherty
manganiferous quartzite, followed by argillites and phyllites with minor interbedded
greywackes. The Chenjiri Formation consists of phyllites and greywackes, with minor
quartzites, chert, felsites, tuffs, agglomerates and andesites. The Copper Queen Formation
consists of a monotonous sequence of phyllites and micaceous feldspathic quartzites,
with a ferruginous marble near the base together with major stratiform Cu-Zn-Pb-Fe-Ag
massive sulphides.

The tectonic setting of the Magondi Supergroup was in a rift-related continental back-
arc basin which formed behind a magmatic arc produced by eastward subduction of
oceanic lithosphere under the Zimbabwe craton (Fig. 7). The Magondi Supergroup was
deformed into a thin- and thick-skinned fold-thrust belt and metamorphosed from
greenschist to granulite facies during the ca. 2.0-1.8 Ga (Rb-Sr, K-Ar) Magondi
Orogeny, which resulted from collision of the magmatic arc and closure of the back-arc
basin. The western part of the Magondi belt was affected by tectonothermal events




Figure 1: Simplified geological map of Zimbabwe showing the Magondi Belt positioned the the NW of the
Archaean craton, The box indicates the position of Fig. 8.

Table 1: Geochronology of the Magondi Belt and related basement units (after Treloar, 1988).
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Pigure 2; General map of Zimbabwe, showing the Magondi Supergroup and the Magondi Mobile
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Mobile Belts. Mote the fracture system on the Zimbabwe Craton, occupied by the

Great Dyke and its satellite intrusions, which is parallel to the trend of the
autochthonous Deweras Group in the Magondi Basin.

(after Master, 1991)
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TECTONIC SETTING OF THE DEWERAS GROUP

Tectonic setting of the Deweras Group: (a) releasing bend on sinistral
strike~slip fault of the Great Dyke-Popoteke fault set, (b) Deweras Group
sedimentation in a strike-slip basin, (¢) formation of en echelon
doubly-plunging synsedimentary anticlines, (d) sigmoidai recurving of the

en echelon anticlines into shear direction, and cutting through of wrench
fauits.

(after Master, 1991) :
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related to the mid-Proterozoic (1.3-0.9 Ga) Irumide Orogeny, and was also affected by
the Pan-African (850-550 Ma) Zambezi Orogeny.

The Magondi belt was unconformably overlain by middle and late Proterozoic rocks of
the Sijarira and Makuti Groups, which were deformed and meta- morphosed in the late
Proterozoic to early Palacozoic Pan-African Zambezi Orogeny. Post-orogenic molasse
of Ordovician age was deposited in the Mid-Zambezi valley area. Following Pan-
Gondwana glaciation, Permian and Triassic Karoo Supergroup rocks were deposited in
rift basins in the Middie and Lower Zambezi Valley areas. This culminated with
extensive Karoo flood basalt volcanism in the early Jurassic. Post-Karoo rifiing
initiated in the late Jurassic, and has carried on to the present day in the Zambezi
Valley, which is still seismically active. Large areas of western Zimbabwe are
covered with Permo-Triassic and Jurassic deposits, as well as by Tertiary and
Quarternary aeolian deposits of the Kalahari. These younger deposits obscure the
underlying rocks of the Magondi Belt, which is only exposed in the northwest, and in the
Dete-Kamativi inlier in the west.

Excursion Stops

Day 1.

Stop 1 (Fig. 8); Kariba Dam Wall

Exposures of Kariba paragneisses, including “Kariba sillimanite quartzite”

In the northern part of the Magondi Belt, the basement consists of a succession of
para- and orthogneisses which have been considered part of the "Zambezi Belt" (Thole,
1976; Broderick, 1981). These gneisses, which include the Urungwe, Escarpment,
Chiroti, Chipisa, Kariba, Chitumbi, Mazamo and Chinemba gneisses, are extremely
variable in texture and composition, and vary from foliated granitic leucogneisses to
biotite gneisses to migmatites. There are also intercalations of hornblende-diopside
calc-silicate gneisses. Some of the gneisses are associated with piugs and sills of
tremolite-chlorite rock and para-amphibolites which are interpreted as metamorphosed
volcanic tuffs (Thole, 1974). Granitoids consisting of plugs of granodioritic and
tonalitic gneisses intruding the various paragneiss units have been recorded by Hitchon
(1958), Wiles (1961), Loney (1969), Broderick (1976), Chenjerai (1988) and
Bartholomew (in prep.). Granitic gneisses (the Tengwe and Kwetchi granites) have been
described from the southern Hurungwe (Urungwe) area by Harper (1973). In the Copper
Queen area, Leyshon (1973) has described several Pre-Magondi basement inliers (Copper
Queen and Copper King domes), consisting of biotitic quartzo-feldspathic granite-
| gneiss which have been mtruded by weakly foliated granites. A meta-granite in the
Kariba area which is intrusive into paragneisses, was dated by Loney (1969) at 2050 +
32 Ma (recalculated Rb-Sr whole rock). The Chipisa Paragneisses were dated by Loney
| (1969), and have yielded a recalculated age of 2443 + 90 Ma. This imprecise result
indicates a late Archaean to early Proterozoic age for the metamorphism that affected
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these rocks. There are also some recent indications from U-Pb dating on zircons that the
Chipisa gneisses are Late Archaean in age (Munyanyiwa and Kroner, unpubl. Data; pers.
comm. )

The Kariba Paragneisses are a northern continuation of the Chipisa Paragneisses, and
also consist of foliated biotite paragneisses with calc-silicate bands and thin
leucogneisses (Hitchon, 1958; Loney,  1969; Kirkpatrick and Robertson, 1987,
Broderick, 1976). There are also some porphyroblastic biotite —gneisses containing
euhedral microcline and microperthite porphyroblasts, which are associated with
small plugs of adamellite and granodiorite (Hitchon, 1958; Broderick, 1976).
Sillimanite quartzites occur interbedded within the Kariba Paragnpeisses, and are
regarded as an arenaceous facies of the paragneiss. Loney (1969)  obtained a
(recalculated) age of 2368 + 92 Ma for the Kariba Paragneisses. This imprecise age
records the metamorphism, and must be regarded as a minimum age. The age of
sedimentation of the protoliths is unknown, but was most probably late Archaean.

The paragneisses and their associated intrusive granitic orthogneisses and ortho-
amphibolites record a major orogenic cycle that is imprecisely dated, but predates the
2.1 Ga Magondi Supergroup. Because most of the gneisses occur in the Hurunge
District, and occupy an area that has been termed the ‘Urungwe Subprovince’ (Stowe
et al., 1984), it was proposed by Master (1991) to call this orogenic cycle the Hurungwe
Orogeny. The age constraints on this orogenic cycle are very pootly defined. The only
dating of the paragneisses, by Loney (1969), indicates ages that span 2533 to 2276 Ma,
i.e. late Archaean to early Proterozoic. Since the gneisses of the Hurungwe District can
be correlated with the gneisses in the Guruve (Sipolilo) District, as appears probable
from the mapping of Hahn et al. (1990), they must be late Archaean in age, since the
Guruve gneisses were intruded by the 2470 Ma old Great Dyke (Worst, 1960; Wiles,
1968, 1972; Prost, 1982).

Interpretations of the metasedimentary paragneisses indicate that they were deposited in
a marine environment. The biotitic and quartzo-feldspathic leucogneisses of the
Urungwe and Escarpment Paragneisses may have been arkoses and greywackes, and
together with the intercalated para-amphibolites (metamorphosed marls), may have
been deposited in a shallow marine setting. In the overlying paragneisses, the lack of
coarse clastic material, major carbonate units or arenites rules out a near shore or
shallow shelf setting, and indicates a deeper marine depository. Thick sequences of
fairly uniform biotite gneisses in the Chipisa Paragneiss may be meta-turbidites, and may
have been deposited in a deep-sea fan setting similar to the Kuiseb Schists of the
Khomas Trough in the Damara Belt (Kukla and Stanistreet, 1990).

The Hurungwe orogenic cycle may have involved subduction of oceanic crust underneath
the Zimbabwe craton, with orogenic obduction of an accretionary wedge onto the
western edge of the craton. If a latest Archaean age is accepted for the protoliths of the
Hurungwe gneisses, then they may have been contemporaneous with the calc-alkaline
rocks of the Bulawayan Upper Greenstones in the western part of the Archacan craton,
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for which a subduction related origin has been proposed by .Condiéﬁfand Harrison. " G

(1976), Wilson et al. (1978) and Watkeys (1984). In Watkeys' (1984) scheme, the
Upper Greenstones represent an Andean-type magmatic arc, produced by eastward
oblique subduction of oceanic crust as the Zimbabwe craton moved south-westward
before colliding with the Kaapvaal craton in the Limpopo Mobile Belt. The Hurungwe
belt of paragneisses may then represent a fore-arc trench complex formed on the leading
edge of the Zimbabwe Archaean craton (Master, 1991).

Stop 2 (Fig. 8): Makuti Group exposures on Zambezi Escarpment

Exposures of the Late Proterozoic Makuti Group (Fig. 9) along the Zambezi
Escarpment are flat-lying, but highly deformed and metamorphosed. Good examples
of boudinage can be seen in quartzofeldspathic psammitic beds intercalated with pelitic
and semi-pelitic schists. Brecciated dolomitic marbles are seen close to the escarpment
fault. Munyanyiwa et al. (1996) interpret felsic gneisses and amphibolites from the Makuti
Group as representing a bimodal rift sequence in an intraplate setting. Although
Munyanyiwa and Blenkinsop (1992) ascribed the basic structure of the Vuti synform
(Figs. 9 & 10), to two phases of deformation, more recent evidence suggests that there
was an earlier phase of deformation that preceded their D1 event. This is manifested by
the presence of an early schistosity that is folded by D1 folds, and possibly by rootless
isoclinal folds, both in the Makuti Group (T.G. Blenkinsop, pers. comm., 1996).

Stop 3 (Fig. 8): Rukomeche River enderbites.
These granulites are metamorphosed equivalents of Piriwiri Group rocks, and have been

dated by Treloar and Kramers (1989) at 1890 £ 260 Ma.

Stop 4 (Fig. 8): Lynx Graphite Mine.

The graphitic schists of the Piriwiri Group have in places been highly deformed and
metamorphosed to high grades, and the resuiting flake graphite has been exploited at the
Lynx Graphite Mine and in several smaller prospects (Muchemwa, 1987) (Figs. 11 & 12).
The mineralization at Lynx Graphite Mine is confined to a horizon of graphite schist which
is interbedded with sillimanite and biotite gneisses and feldspathic psammites (Armstrong,
1975). The graphitic horizon has been traced geophysically and by trenching for a strike
length of over a kilometre (Davies, 1982; Muchemwa,1987).
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Day 2
Stop 5 (Fig. 8): Mwami (Miami) mica field

5.1 The Mwami mica field contains muscovite mica pegmatites (Figs. 13 & 14, after
Wiles, 1961) related to regional metamorphism of the Piriwiri Group (Fig. 15). There are
also mica and beryl pegmatites (with gem tourmaline and blue topaz) related to intrusive
Miami granites (Pan-African age) (Fig. 16, after Treloar,1998).

5.2; Masterpiece Farm kyanite deposit

This is a deposit situated in a belt of Piriwiri Group graphitic schists, in which kyanite
pseudomorphs after andalusite (chiastolite) occur (Fig. 17). The kyanites, which occur as
single crystals and penetration twins (Figs. 18 a & b), were described by Workman and
Cowperthwaite (1963).

Stop 6 (Fig. 8): D-Troop cluster of Au deposits along the Angwa River

6.1. The D Troop mine is one of several small gold mines and prospects along the Angwa
River, in which gold mineralization is associated with a stockwork of N-trending quartz
veins cutting phyllites and more sandy argillites of the Piriwiri Group. The veins appear
structurally related to a NE-plunging anticline with minor drag folds. The gold is
associated with pyrite. Most of the workings are shallow, and are confined to the oxide
zone. The cumulative production from 1892 to 1984 was 556.22 kg Au at an average
grade of 4.2 g/t (Bartholomew, 1990).

The D Troop mine is one of the most ancient authenticated mines in Zimbabwe. In the
1890's, when the old diggings were opened up by prospectors, an engraved bronze cup
was found in the workings. This cup, which is now in the National Museum in Bulawayo,
contains incised Indian designs which have been dated to ca. the 14th Century AD, i.e.,
during the height of the gold-based Monomotapa kingdom, which was centred on Great
Zimbabwe.

In thel6th Century, the Portuguese had taken control of the coastal areas of
Mozambique, and took over the gold trade that was formerly run by Arabs based in the
sultanates of Zanzibar, Pemba and Chilwa off the coast of East Africa. The Portuguese
penetrated inland up the Zambezi and its tributaries, and built forts along the Angwa
River, from where they controlled the gold mines of the D Troop cluster.
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1963).

1l

Fig. 18: (i a&b) Examples of chiastolite crystals now entirely converted to kyanite. (iia) a single crystal,
' (iib) a penetration twin, The specimens have been cut parallel to (001) to show the cross-
sections (after Workman & Cowperthwaite, 1963).
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6.2: Morocco Manganese Claims.

The Morocco claims, near D-Troop mine, contain manganese oxide mineralization in a
thrusted zone of argillites separating Lomagundi Group rocks from Piriwiri Group
phyllites. Individual bodies, averaging 45 m in length and 60 cm in width, are associated
with brecciated concordant quartz veins (Kirkpatrick, 1976). 733 tonnes of ore grading
45% MnQO, were declared from 1961-1966.

Day 3
Stop 7 (Fig. 8): Mangula Cu-Ag Mine, Mhangura

7.1. Underground visit to Mangula Mine, the largest copper-silver producer in Zimbabwe
(Figs. 19-22). Mangula a stratabound sediment-hosted Cu-Ag-Au-Pt-Pd-(UMo) deposit
hosted in red beds of the early Proterozoic (ca. 2.1 Ga) Deweras Group, which
unconformably overlies the Archaean basement. The host rocks are arkoses, conglom-
erates and metapelites of the Mangula Formation, which were deposited in alluvial fan
and braided stream environments. The rocks were deformed and metamorphosed to
greenschist facies during the ca. 2.0-1.8 Ga Magondi Orogeny, as well as during the
Irumide (ca. 1.3-0.9 Ga) and Pan-African Zambezi (ca. 550 Ma) orogenies.

Although Mangula was discovered in the 1920's, mining only commenced in 1957, and its
original size is estimated to have been 60 million tonnes at an average grade of 1.2%
copper and 20 g/t silver. Important by-product gold, platinum and palladium are recovered
from the ores. Copper mineralization occurs over a stratigraphic thickness of about 200
m in the basal part of the Deweras Group. For mining purposes, the deposit is divided
into eight parallel tabular orebodies separated by subgrade mineralization or barren zones,
and extending along strike for 2 km. Most of the orebodies coalesce at depth and extend
down-dip to about 900 m below surface.

The orebodies at Mangula Mine are hosted by alluvial fan and braided stream lithologies
of the Mangula Formation. Although the mineralization is found in all rock types, there is
a strong spatial association with lithologies of the distal fan facies association, in particular
where there is an interfingering of permeable arkosic horizons with impermeable pelitic
beds. The orebodies, which have an elongate tabular form concordant with the bedding,
consist of disseminated chalcocite and bornite, with subordinate chalcopytite and minor
pyrite and molybdenite. The footwall of the orebodies are characterised by intense reddish
haematitic alteration, accompanied by silicification and microclinization of arkosic
arenites. In these zones, sedimentary structures such as cross-bedding are completely
destroyed, and replaced by stratiform zones of haematite and magnetite bands and
ellipsoids which are parallel to both bedding and cross-bedding. The magnetite ellipsoids
may also contain minor copper sulphides and uraninite. The main source of the uranium,
as revealed by fission track studies, was detrital zircon (together with minor ailanite and
apatite), that was concentrated in heavy mineral layers in the sediments. The magnetite
ellipsoids have been shown to be flattened triaxial oblate ellipsoids, which are true strain
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ellipsoids formed by deformation of initially spherical reduction spots which are common
in redbeds of all ages (Master, 1991). Oxidising metamorphic fluids generated by pressure
solution during the first phase of deformation were responsible for very similar
haematite-microcline alteration, especially around faults and veins.

The ore minerals are divided into primary (hypogene) minerals and secondary
(supergene) minerals. The main primary sulphide minerals are chalcocite and bornite,
with subordinate chalcopyrite and pyrite, minor digenite, molybdenite, and trace
acanthite and wittichenite. The primary non-sulphides include native copper, native
silver, native gold, magnetite, haematite, rutile, sphene, chromite, and uraninite. Silver
and gold also occur as lattice-substitutions in copper sulphides. Platinum and palladium
are also recovered as by-products from the sulphides, and no discrete platinum-group
mineral has been identified as yet. There is no galena or sphalerite. The secondary
minerals, which are restricted to the uppermost, oxidised parts of the orebodies, include
malachite, chrysocolla, cornetite and pseudomalachite, together with minor azurite,
turquoise, native copper, bornite, digenite, covellite, chalcopyrite, cupriferous wad,
metatorbernite, uranophane and chalcanthite. There is a very strong correlation
between Cu and Ag values, and a good correlation between Ag and Au values in the
primary ores (Master, 1991). Au and PGE (Pt, Pd, Ir) are concentrated in sulphides and
magnetites, and are highly depleted in the haematised and K-metasomatised alteration
zones in the footwalls of the orebodies. The orebodies are zoned both vertically and
laterally, having chalcocite cores surrounded by bornite-rich zones, passing out into
narrow fringes of chalcopyrite and then into wide pyritic zones containing very minor
sparsely disseminated pyrite (Fig. 22). Sulphur isotope values in the sulphides have a
range in 5°*S of -2.3 to -16.0 permil CDT, and are interpreted to have resulted from
thermochemical abiogenic reduction of sulphates at high temperatures (Master, 1991).

Copper mineralization occurs in several forms: (a) as even, banded or cloudy
disseminations in arkose and schist; (b) as a replacement of detrital iron-titanium oxides
on crossbed foreset laminae; {c) as syntectonic quartz-microcline-sulphide (-haematite-
carbonate) veins occupying brittle fractures in competent lithologies; (d) as cleavage-
parallel syntectonic quartz-microcline-sulphide veins in semi-pelitic schists. The ore
textures are interpreted as the result of partial remobilization of pretectonic disseminated
mineralization during polyphase deformation and metamorphism.

The stratabound mineralization at Mangula Mine, and the accompanying alteration, was
produced by saline, slightly alkaline oxidising basin brines, which evolved through
reaction with evaporites in the sequence, and which leached metals out of the redbeds,
especially from detrital components like titanomagnetite, - chromite, zircon, apatite and
labile ferromagnesian minerals. The high copper and silver contents of the ores, the
relatively low gold and platinoid contents, and the absence of lead and zinc are explained
by the respective solubilities of these metals in the postulated ore fluids (Master, 1991).
Sulphide precipitation occurred where mineralizing fluids encountered reduced beds
and/or reduced fluids, and through replacement of pre-existing pyrite and magnetite.
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Figure 22: Mid Plate Orebody in borehole E12/2083 at Mangula Mine (after Master, 1991)
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7.2: Highbury Meteorite Impact Structure

Exposures of Deweras and Lomagundi Group rocks which have undergone intense shock
metamorphism and brecciation by a large meteorite impact, which produced a crater 20
km in diameter called the Highbury Impact Structure (Fig. 23). Shock metamorphic effects
include the formation of Planar Deformation Features (PDFs) in quartz, which have an
orientation characteristic of shock deformation at pressures exceeding 150 kbars (Fig. 25),
and silica-rich impact glass (which has been partly devitrified). A granophyre exposed in
the Ridziwi stream intrudes meta-arkoses and tremolitic marbles of the Deweras Group.
This granophyre, which is interpreted to be an impact melt, has been dated at 1034 + 13
Ma (Fig. 24, after Master et al., 1995).

Day 4
Stop 8 (Fig. 8): Shackleton-Avondale Cu-Ag Mine

Underground visit to Shackleton Mine (Fig. 26), which is hosted by metasedimentary
rocks of the Deweras Group. In the Avondale section, will examine stratabound copper-
silver orebodies hosted in conglomerates, arkoses and argillites. The orebodies at
Shackleton and Avondale are in the form of elongate ore-shoots formed under
impermeable and reducing argillite caps in doubly-plunging en-echelon anticlinal trap
structures associated with a major sinistral wrench fault which was the feeder for the
mineralizing brines (Fig. 27).

The Avondale sequence is separated from the overlying Shackleton sequence by the
Dolomitic Argillites. Fresh exposures of these will be studied on 10 Level. The dolomitic
argillites consist of thinly bedded dolomite horizons alternating with clastic ripple-marked
dolomite and upward-fining marly arenite units. Thin pink anhydrite layers may overlie
persistent chemically precipitated dolomite beds. The anhydrites are also reworked
clastically into ripples. The ripple-marked dolomites exhibit the whole range of
sedimentary structures indicative of tidal flat environments, including single, bifurcated
and trifurcated flaser bedding, lenticular and wavy bedding, and starved ripples. Such
structures are indicative of time-velocity asymmetry in the depositional environment,
with alternating periods of ebb and flood flow (during which ripple marks form),
separated by highstands and lowstands during which shale drapes form. Such processes
are characteristic of a shoreline environment, which in this case was on the shores of a
satine playa lake which deposited evaporites (carbonates and sulphates).

The Avondale orebody is associated with two or three argillite horizons (known as the
Hangingwall, Middle and Footwall argillites), which occur with plane-bedded arenites
interbedded with trough crossbedded arenites and conglomerates (Fig. 28). Mineralization
is erratic, and may vary in its stratigraphic position with respect to the argillites- some-
times it is associated with one argillite, sometimes with another, and in other cases with
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Figure 24: U.Pb plot of Munwa granophyre zircons. Euhedral
(igneous) concordant zircons have an age of 1034113 Ma.
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two or three argillites. The exact controls on the position of the mineralization are still
unknown. The Avondale conglomerates are oligomictic, with mainly shale intraclasts and
small granite clasts, which do not get beyond the pebble to cobble range in size. The
argillite horizons are commonly mudcracked, and provide abundant intraformational clasts
for the overlying conglomerates. Some of these clasts are imbricated, and show
palaeocurrents trending towards the east. In the immediate footwall, stratigraphically
below the Avondale ore horizons, there occur large-scale crossbedded arkosic arenites,
which have been proven to be aeolianites. These have interbedded interdunal pan
sediments consisting of mud-cracked argillites.

Stop 9 (Fig. 8): Muchi River thrust front

The thrust front of the Magondi Belt is exposed along the Muchi River (Fig. 29). Here
Lomagundi group quartzites are thrust over the Archacan basement.

10 ka

| . J

& %

- Piriwiri and
Lomaguadi argilliles

Lemagandi quartrito

Dawaras

Archans

Figure 29: Map of the basal thrusts and overlying fold belt in the southemn part of the
Magondi Belt (after Tennick & Phaup, 1976; Treloar, 1988). MR = Muchi River

Day 5
Stop 10: Chinhoyi Caves (Fig. 30)

The spectacular Chinhoyi Caves, one of the biggest tourist attractions in Zimbabwe, are
karstic features developed in the Lomagundi dolomites. The caves are situated along a
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Figure 30: Geological map of the Lomagundi Group near Chinhoyi (after Stowe, 1978).
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large fault zone in the dolomites. The Wonder Hole is a large karst sinkhole with circular
outline, in the bottom of which is a 90 m-deep lake filled with clear, blue water.

10.1: Road Traverse, Lomagundi Group

Road traverse of lithologies of the early Proterozoic Lomagundi Group, along the
Chinhoyi-Lomagundi College Road. This area was mapped by Stowe (1978) (Fig. 30).
Along this traverse there are exposures of stromatolitic dolomites and Pockmarked
Quartzite of the Mcheka Formation, and graphitic shales, Striped Slates and Mountain
Sandstone of the Nyagari Formation.

Stop 11: Deweras Group aeolianites in Angwa River, on the road between Chinhoyi
Caves and Alaska Mine. Large-scale planar crossbedded arkosic sandstones of the
Deweras Group display small-scale features that are diagnostic of aeolianites, including
cm-scale inversely-graded ripple-cross-laminated “subcritically-climbing translatent strata”
(Hunter, 1976), wedge-shaped massive grainflows (avalanche deposits), and pinstripe
lamination. These are among the oldest authenticated aeolianites in the world (Master,
1995).

Stop 11.1: Visit to the Alaska Mine quarry, from which oxidised copper ore, mainly
malachite, was mined for centuries by the indigenous population in the pre-colonial era.

The mineralization at Alaska Mine (Fig. 31) occurs in highly sheared dolomites and
intercalated sandstones and siltstones of the Lomagundi Group, and consists mainly of
oxidised malachite ore, with some hypogene chalcocite or djurleite which occurs as
pseudomorphs after pyrite, and minor chalcopyrite (McCann, 1928; Stagman, 1961;
Newham, 1986). Sulphur isotopes of the sulphides range in 5>'S from +8.1 to -2.0
permil CDT (von Rahden and de Wet, 1984). The malachite occurs as paint-like films
along cleavage planes and fractures. Other oxide minerals recorded are chrysocolla,
cornetite, plancheite, shattuckite dioptase, cuprite and tenorite. Native copper occurs
as dendritic crystals, and as sheets along fractures and faults. JB.E. Jacobsen (1964)
described the geology of the deposit, and interpreted the host rocks to be part of
an allochthonous nappe that was bounded at the base by a major breccia zone. The
nappe consisted of several imbricately stacked thrust sheets, in what would today be
termed a duplex structure (Fig. 32). Newham (1986) reinterpreted the structure to be
a simple syncline, as shown in his idealised cross-section of the deposit. This is at
total variance with the detailed mapping of Jacobsen (1964) (Figs. 31 & 32), as well as
with maps produced by the mine in 1970.

Examination of a sample from the sandstone orebody, which contains ‘chalcocite’
pseudomorphs after pyrite, revealed convincing evidence for the timing of the
mineralization. The ‘chalcocite’ was shown by XRD to be the first occurrence in
Zimbabwe of the closely related mineral djurleite (Cus1S16) (Master, 1991). The djurleites,
pseudomorphous after cubic pyrite, are deformed into parallelepipeds, and appear
diamond-shaped in cross section. The host rock is a highly sheared metasiltsone,
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which has shear planes with talcose partings, and which have a strong slickensided
striation lineation, with steps at right angles to this. Fibrous minerals growing in the lee of
the slickenside steps are oriented parallel to the lineation. The long axes of the deformed
djurleite pseudomorphs are also aligned parallel to the lineation, and they appear to have
stretched during simple shear. The djurleite pseudomorphs have quartz-rich pressure
shadow fringes, indicating that the replacement took place after these fringes had formed
around the earlier euhedral pyrites. If the djurleite replacement had taken place before any
deformation, there would be no pressure shadows around the djurleites, but instead,
because of the low grain boundary energy and strength of chalcocites, they would have
been totally flattened into parallelism with the cleavage. The deformed pseudomorphs with
pressure shadows indicate that the replacement must have happened syntectonically. A
first increment of deformation produced a schistosity in the rock, and formed quartz
pressure shadows around rigid pre-existing pyrite crystals. The rock was then infiltrated
syntectonically by copper-bearing solutions moving along permeable cleavage and
fracture planes, which replaced the pyrite by djurleite. The djurleites, with their inherited
quartz pressure shadow fringes, then underwent further deformation, in which they
behaved plastically, and suffered rotation and flattening by simple shear. A similar
example of chalcocite pseudomorphs after euhedral pyrite has been recorded from the
Klein Aub Mine in Namibia (Borg, 1987), but in this case the replacement was post-
tectonic, since the chalcocites, with their quartz pressure shadows, are undeformed.

Stop 11.2: Halite casts, Nyagari Formation

At 32 km along the road from Alaska to Sanyati, there is a roadcut with exposures of
siltites of the Nyagari Formation, of the Lomagundi Group, which contain halite casts in
the form of hopper crystals.

Day 6
Stop 12: Sanyati Mine (Cu-Zn-Pb-Ag Massive Sulphide deposits)

The Sanyati polymetallic Cu-Zn-Pb-Ag massive sulphide deposits are situated about
100 km SW of Chinhoyi. They are expressed on surface as a line of spectacular
malachite-stained ferruginous gossans which extend from the Copper King Dome to the
Copper Queen Dome, over a strike length of about 25 km (Fig. 33). The deposits,
including the Copper Queen, Copper King, Copper Joker and Copper Straight prospects,
which are all developed along the same strike, were first pegged in 1910, and briefly
worked for copper in 1918-1919. They subsequently went through a checkered history,
including a major share fiasco in the 1920's), before being acquired by MTD in the 1950's.
The deposits were taken over by ZMDC when MTD withdrew from Zimbabwe in 1985.
In 1994 Reunion Mining (Zimbabwe) formed a joint venture with ZMDC to mine the
oxidised part of the deposit. The only prospect that has been extensively drilled and
developed underground is the Copper Queen prospect (J-Lines) (Fig. 34), where about
14.2 million tonnes of ore, grading at about 1.2% Cu, 3.2 % Zn and 0.9% Pb, was
proven. :
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Fig 33: Geological sketch map of the Sanyati area (after Bahnemann, 1957).
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The mineralization is closely associated with a band of tremolitic ferruginous dolomite
marble which is surrounded by phyllites, schists and feldspathic quartzites. The
hypogene ore minerals consist mainly of pyrrhotite, sphalerite, chalcopyrite, galena,
arsenopyrite and  pyrite, with minor magnetite, cubanite, valeriite and marcasite.
Bahnemann (1957, 1961) suggested that the Sanyati deposits were skarn deposits related
to emplacement of the Copper Queen and Copper King domes, but the style of
mineralization shows great similarities with the class of sediment-hosted volcanogenic
massive sulphide deposits referred to as “Besshi-type VMS?” deposits. The continuity of
the gossans over 25 km indicates that the Sanyati deposits have the potential to be a major
ore district.
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