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Introduction 

 
The main aim of this field trip is to examine a profile from the Zimbabwe craton into the 
Northern Marginal Zone of the Limpopo Belt. This profile has the potential to shed light on 
one of the main puzzles of Archean geology: to what extent did the cratons behave as 
rigid plates in the Archean, and why? A detailed comparison of the margin of the craton 
with the typical structures of the NMZ, coupled with accurate geochronological constraints, 
would help to understand the issues, and conversely, explain the differences in geology 
between the craton and the mobile belt. 
 
A fascinating additional aspect of the profile is the existence of Renco gold deposit a few 
km away from the craton-NMZ transition in the Limpopo Belt. Although Renco is the only 
gold deposit so far known in the NMZ, there are interesting comparisons between Renco 
and the newly discovered 8 Moz resource at Tropicana in the Albany-Fraser orogeny on 
the margin of the Yilgarn craton in Australia. The question of whether these pericratonic 
deposits are localised by their craton margins has very significant exploration implications. 
 
This field guide is based largely on the North Limpopo Field Workshop Field guide 
(Blenkinsop and Rollinson,1992), Blenkinsop et al. (2004), Blenkinsop and Kisters (2005) 
and Blenkinsop (2011). The itinerary is intended to take two days, starting from the craton. 
Overnight on both days will be at Norma Jeans Hotel, near Great Zimbabwe. 
 

Itinerary 
 
Stop Locality Map 

sheet, 
GR 

UTM, 
WGS84, 
36K 

Geology 

1 Great Zimbabwe-Renco 
Road 

2030B4 
810598 

280782  
7759650 

Porphyritic granite 

2 Renco-Masvingo Road 2030B3 
870490 

285698 
7748399 

Cratonic gneiss 

3 Renco-Masvingo Road, 
64 km 

2031A3 
936336 

3293168 
7733252 

Craton Fabrics close to NMZ 

4 Renco-Masvingo Road, 
Rupike Dam 

2031C1 
027264 

302231 
7726051 

NMZ-Craton Shear Zone 

5 Renco-Masvingo Road  308537 
7721922 

Low grade shear zone, NMZ 

6 Road to East of Renco-
Masvingo Road 

 312414 
7723080 

Nyamawanga Dyke 

7 Renco-Masvingo Road  309991 
7719461 

Renco Enderbite 

8 East of Renco Road  314488 
7718179 

Southern end of Nyamawanga 
Dyke 

9 Rupati pools, Renco 
Mine 

2031C1 
090188 

310156 
7715755 

Gold Mineralization in the NMZ 

10 Renco-Chiredzi Road  292754 
7705812 

Mafic Granulite 
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1. GREAT ZIMBABWE-RENCO ROAD, Near Great Zimbabwe 
 
Aim: To examine the Victoria Porphyritic Granite. 
Introduction: This granite is in the Kyle sub-province of Robertson's Porphyritic Granite. It 
lies on a 2,604 ± 70 Ma isochron (7 points; Hickman 1978); initial 87Sr/86Sr ratio 0.7025 ± 
0.0030. 
Description: Porphyritic granite with megacrysts up to several cm and a very weak 
foliation. Described by Hickman as " slightly foliated coarse porphyroblastic granite, K-
feldspar porphyroblasts up to 2.5 cm (inclusions of biotite, quartz, plagioclase), slightly 
altered plagioclase, + quartz, biotite,  (apatite, zircon, opaques). 
 
 
2. RENCO-MASVINGO ROAD, MUDZVIRO RIVER 
 
Aim: To examine the craton further towards the NMZ. 
Description: Banded gneiss containing amphibolite xenoliths. A good foliation in the 
gneiss dips moderately south (Fig. 1). Foliation within the amphibolite xenoliths is 
discordant to the gneissic foliation.  
 
 
3. RENCO-MASVINGO ROAD, 64 km peg 
 
Aim: To observe fabrics in the craton closer to the NMZ transition 
Description: Granitic gneiss with mafic xenoliths. Gneissic banding is folded into isoclinal 
folds. The well-foliated gneiss has a weak lineation, and the fold axes appear to plunge 
parallel to the lineation, although they are very difficult to measure. The foliation dips to the 
southeast and the lineation is down-dip. 
Banded Gneiss:  Mineralogy: quartz, plagioclase, microcline, biotite (opaques, muscovite, 

chlorite, apatite). Large perthitic microcline grains with plagioclase inclusions and partly 
sericitised plagioclase grains in a fine grained matrix of quartz, biotite, plagioclase and 
microcline. 

Metabasite Xenolith: Mineralogy: Biotite, plagioclase, quartz (apatite, opaques, sphene).  
Medium grained granular texture.  This rock is intermediate in composition, rather than 
basic. 

 
 
4. RUPIKE DAM 
 
Aim: To examine the major shear zone at the Craton-NMZ Transition 
Introduction: The thrust sense shear zone at the Craton-NMZ transition was identified 
and mapped by Odell (1972) and James (1976) to the southeast of Masvingo (Fig. 2). 
Although the shear zone was documented only in this area, its importance and along-
strike continuation has been taken for granted in almost all subsequent literature, and 
underpins the important tectonic models by Coward and coworkers for the NMZ. 
Integration of strain derived from foliation trajectories was used by James (1975) to infer 
27 km of NNE-directed horizontal movement and 25 km of vertical uplift of the NMZ over 
the Craton. This thrust has been called the North Limpopo Thrust Zone by Blenkinsop and 
Mkweli (1992) and its regional extent has been documented by Mkweli et al. (1995). At 
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Rupike Dam, we can see a spectacular development of the NLTZ, which helps to 
understand why so much importance has been attached to this shear zone. 
Description: At least three different types of protomylonite/mylonite can be differentiated 
within the shear zone, which consists of over 50 m of mylonites. Amphibolitic mylonites 
are intruded by porphyroclastic granites which are  mylonitized. Garnetifierous granitic 
mylonites are also found particularly to the south of the Dam.  
Mylonitised porphyritic granite. Mineralogy: quartz, plagioclase, microcline, biotite, chlorite, 

epidote. Relict grains of plagioclase (some altered to sericite and/or epidote) and 
microcline in fine-grained granular matrix of quartz, plagioclase, biotite, microcline and 
chlorite. Coarser bands of ribbon quartz. 

Metabasite: Mineralogy: epidote, chlorite, plagioclase. 
Dioritic Phase: Mineralogy: quartz, plagioclase, epidote, chlorite, calcite.  Ribbon quartz, 

late calcite veins. 
Garnetiferous mylonites of the south side of the dam: Mineralogy: quartz, plagioclase, 

microcline, garnet, biotite. These mylonites have a matrix of microcline, plagioclase 
and quartz and contain quartz ribbons. Biotite, where present, may be altered to 
chlorite and plagioclase to muscovite. Garnets are subhedral to euhedral, elongated 
parallel to the mylonitic fabric. Some grains are broken. Relict sillimanite and green 
spinel are overgrown by biotite. 

Structures: The garnetiferous granitic mylonites look like to the similar, common  lithology 
within the Triangle shear zone in the field, but in thin section, the  garnets are slightly 
different: they do not contain quartz intergrowths, and are always porphyroclastic : there is 
no evidence for syn-late tectonic garnet growth. There is also a considerable difference in 
recrystallised quartz grain size between the Triangle shear zone and the Craton-NMZ 
shear zone: the latter has much finer sizes, implying higher stresses. The strong foliation 
dips gently southeast and carries a strong down-dip lineation (Fig. 1a). A variety of 
excellent shear sense indicators can be found. 
 

     
Fig. 1  a) Poles to foliation and lineation Fig.12 b) Poles to foliation and lineation,  
 Rupike Dam and adjacent areas, Craton, North of NMZ 
 Best Fit Foliation: 38 to 164, n=9  Best Fit Foliation: 33 to 160, n=6  
Best Fit Lineation: 38 to 169,n =8  Best Fit Lineation:20 to 717, n=3    
 
Porphyritic granites north of the thrust belong to the Razi granite suite. Mineralogy: quartz, 

plagioclase, microcline, biotite, hornblende ± orthopyroxene. large plagioclase and 
microcline grains, recrystallized at some grain boundaries, are set in a finer grained 
matrix. Pyroxene is largely altered to a hornblende quartz and opaque matrix. 
Plagioclase is rimmed by biotite. 
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Fig. 2. Detailed geological map of the NMZ around Renco mine. The prominent thrust 
symbol in the Northern part of the map is the North Limpopo Thrust Zone. The grid points 
are in UTM coordinates. 
 
 
5. LOW GRADE SHEAR ZONES 
Aim: To see low grade shear zones with possible pseudotachylyte, potentially formed at 
2000 Ma after exhumation of the NMZ. 
Description: Low grade shear zones in the NMZ (Fig. 2) are characterized by abundant 
chlorite and fracturing along zones 10cm to 2m wide. They are readily distinguished in the 
field from medium grade zones by their dominantly cataclastic texture and green 
colouration due to chlorite. The maximum strike length of these deformation zones is 
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350m. They are separated by 2.5 to 4km along strike and 5km across strike. Like the 
medium grade shear zones, the low grade shear zones strike east- northeastward and dip 
gently to moderately southeastward, with down dip chlorite and quartz mineral lineations 
(Fig. 3).! 
 
An interesting aspect of these shear zones is the presence of planar zones up to 2cm 
wide and a few m long parallel to fractures and containing large proportions of chlorite. 
Although the zones are generally planar, distinctive V-shaped triangular offshoots extend 
up to 10cm from the planar zones into the wall-rock at angles of 45 to 60° in the plane 
perpendicular to the foliation and parallel to the lineation. The zones contain angular to 
sub-angular quartz clasts and equant opaque grains 2 to 200  µm in size in a matrix of 
brown, very fine grained, high relief material, partly comprised of chlorite and very fine 
grained phyllosilicates. A very weak foliation is defined by the phyllosilicates, at a high 
angle to the margins. The opaque grains are generally scattered throughout these zones, 
but also may be concentrated in bands along and adjacent to the margins. The margins of 
the zones are generally sharp and planar, but in places where chlorite lies in the host rock 
along the edge of the zones, the margins are embayed. In situ fragmentation of quartz and 
feldspars occurs along the margins in places. 
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Fig. 3. Lower hemisphere, equal area projections of poles to foliations (S) and lineations 
(L) in the shear zones of the study area.  Medium grades shear dip to the south-southeast, 
with down-dip lineations, similar to the fabric in the Archeaen rocks shown in Figure 3 and 
interpreted to be Archeaen. Conjugate dextral and sinistral strike slip shears have a similar 
lineation, and the low grade shear have similar foliation and lineation orientations to the 
medium grade shears, but are interpreted to be Proterozoic. 
 
Many of the above characteristics are compatible with a pseudotachylite origin for the 
material in the zones, such as their occurrence as planar fractures, which can be 
considered as generation surfaces. The triangular offshoots have a comparable geometry 
to injection veins as described in pseudotachylites (e.g.!Passchier and Trouw 1996). The 
mineral composition of the matrix is compatible with a devitrified and recrystallised glass. 
The fragments in the matrix, evidence for fragmentation along the zone margins (e.g. 
Grocott 1981, Magloughlin 1989), and embayments in hydrous minerals along the margins 
of the zones are characteristic of preferential melting of hydrous phases in 
pseudotachylites (e.g. Maddock 1992, Camacho et al. 1995). It is not possible to prove 
conclusively that these zones are pseudotachylites generated by frictional melting as well 
as cataclasis (cf. Spray 1995) without further detailed analysis, but the evidence is 
strongly suggestive. These zones formed during/after the low grade shear zones which 
they cut. Their exclusive association with the low grade shear zones, and the presence of 
chlorite and a foliation in the recrystallised matrix of the zones suggests that they may 
have been formed the later stages of this deformation. Temperature conditions during 
formation of the low grade shear zones are constrained to less than 400˚C. 
 
 
6. Nyamawanga Dyke 
 
Aim: To see a very early Proterozic dyke intrusion in the NMZ and to examine it’s state of 
deformation. 
Introduction: The Nyamawanga dyke is a prominent feature of the landscape East of 
Renco, controlling a linear drainage for about 1o km in a NNW orientation. This would be 
very similar to the Sebanga Poort dyke swarm orientation, which were considered by 
Wilson et al. (1987) to represent possible feeder dykes to the Mashonaland Sills, and 
therefore around 1.8 Ga in age. However, recently Soderland et al. (2010) have redated 
the Sebanga Poort dyke to 2408 Ma, earliest Proterozoic. The state of deformation of this 
dyke will constrain post-Archean events in the NMZ. 
Description. The Nyamawanga Dyke is 10 – 15 m wide and 10 km long. In dolerites such 
as this one in the general area, laths of plagioclase (An55) 2 to 3mm in length are 
surrounded ophitically by clinopyroxene which is partly replaced by amphibole. 
Plagioclase edges in contact with pyroxene are partly replaced by chlorite and quartz. 
Olivine occurs in grains 0.3mm in size. Quartz and biotite are accessories. 
 
 
7. Renco Enderbite 
 
Aim: To examine the host rocks of the Renco Deposit 
Description: Enderbites are orthopyroxene-bearing quartzo- feldspathic granulites 
distinguished from charnockites by their higher plagioclase/orthoclase ratio, giving them 
tonalitic to granodioritic QAP compositions (e.g. Streckiesen 1976). Four enderbite 
intrusions occur in the area of study. The largest body, which hosts the gold mineralisation 
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at Renco, has dimensions of 10 x 3km (Figure 2). Fresh enderbites exposed at the Tokwe 
Mukorsi dam site (25km west-southwest of Renco Mine) during blasting have a similar 
appearance to the main Renco body. Enderbites from the dam were sampled during this 
study for geochronology (samples VC140 and VC141). These rocks are medium grained, 
grey-brown, and homogeneous; mostly they are massive but rarely they have a weak 
foliation. Quartz occurs as aggregates of grains 0.1 mm in size with undulatory extinction. 
Plagioclase (An46-62) is found as grains 0.6 to 0.8mm in size. Orthopyroxene crystals are 
typically 0.8mm in size and are rimmed by biotite and quartz. The same textural 
relationships were described by Ridley (1992) and attributed to the water absent 
dehydration-crystallisation reaction:!Orthopyroxene + melt -> Biotite + quartz 3!Kamber 
and Biino (1995) found that this texture is relatively uncommon in the NMZ and interpreted 
most of the biotite interfingered with quartz as a retrogression texture, produced by the 
hydration reaction:!Orthopyroxene + K-feldspar + H2O -> Biotite + Quartz 4!A related 
possibility for the formation of this texture is the addition of K via a flux of late hydrous 
fluid. The samples examined in this study support the origin of biotite and quartz in the 
enderbites both by the melt present reaction and retrogression, as observed by Kamber 
and Biino (1995). However, as comments on the above criteria, it can be pointed out that 
no samples lacking hydrous phases have been observed in this study area, and it is not 
clear why the existence of late magmatic quartz-plagioclase myrmekites should discount 
the existence of magmatic quartz-biotite intergrowths. Our observations suggest that best 
way to distinguish the two reactions is probably to examine the detailed textural 
relationships. Delicate intergrowths between biotite and quartz favour the melt present 
reaction (3), as per Ridleys’ last point, whereas retrogression creates more random 
quartz-biotite relationships. The presence of the intergrowths without adjacent K-feldspar 
strongly supports the melt present reaction. Hornblende is commonly rimmed by 
simplectites of orthopyroxene + plagioclase, seen as evidence for the prograde reaction 
(1). In melanocratic varieties of the enderbite, the proportion of mafic minerals increases 
by about 5%. 
 
The enderbite dated by Blenkinsop et al. gave an age of 2622.1 ± 0.4 Ma. 
 
 
8. Southern End of Nyamawanga dyke 
 
Aim: to examine the Nyamawange dyle adjacent to the Mtilikwe shear zone 
Background: The physical expression of the dyke is curved at the contact with the 
Mtilikwe shear zone – is this post 2.4 Ga deformation, or an original intrusive geometry ? 
 
 
9. RUPATI POOLS: MTILIKWE SHEAR ZONE 
 
Introduction: The Mtilikwe shear zone is an example of a medium grade shear zone that 
has rather unexpected characteristics, which have been interpreted to indicate a 
distinctive style of Archean tectonics (Blenkinsop and Kisters 2005). 
Description: The Mtilikwe shear zone is an up-to-500 m wide east-northeasterly trending 
zone of protomylonites and mylonites that can be traced for 25 km along strike (Fig. 4).  
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Fig. 4. Map of the Mtilikwe shear zone, partly after Chiwara (2003) and Blenkinsop et al. 
(2004). 
 
 
The belt of mylonitic !rocks occurs 15 km to the south of the NLTZ. Pb-Pb step leach ages 
from synkinematic garnets from within the mylonites yielded a well-defined isochron 
indicating an age of 2601 _+ 5 Ma that was interpreted by Blenkinsop & Frei (1996) to 
represent the age of shearing and accompanying metamorphism. This age is within error 
to the main phase of thrusting recorded along the east-central parts of the! !NLTZ (Mkweli 
et al. 1995) so that the Mtilikwe shear zone was previously described as part of the 
regionally developed, anastomosing system of reverse and thrust zones that constitute the 
composite NLTZ (Blenkinsop & Frei 1996).  
 
For most of its extent, the Mtilikwe shear zone!is developed in plutonic enderbites and 
medium- grained granulites as well as locally developed, strongly gametiferous and 
sillimanite-bearing gneisses. The latter show a pronounced com- positional banding on 
outcrop scale and are possibly of sedimentary origin. The mylonitic foliation in the Mtilikwe 
shear zone trends ENE and dips steeply to the SSE, parallel to the regional structural 
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grain of the NMZ (Fig. 4). A prominent lineation, made up of quartz and quartz-feldspar 
rods, has mainly a downdip orientation in the foliation. A slight but systematic variation in 
the plunge of the lineation is noted along strike, changing from southerly plunges in the 
west to southeasterly plunges in the east of the Mtilikwe shear zone (Fig. 5). Centimetre- 
to decimetre-scale isoclinal, intrafolial rootless folds in the gneissic layering testify to the 
transposition of an earlier compositional banding or gneissic layering in probable 
paragneisses. The intrafolial folds plunge parallel to the downdip rodding lineation. Sheath 
folds were not observed. The!trend of the Mtilikwe shear zone is very closely parallel to 
the regional gneissic fabric, and lineations in the MSZ are parallel to the SE to S plunge of 
the lineations in the regional fabric.! 
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Fig. 5: Lower hemisphere, equal area projections of mylonitic fabrics along the Mtilikwe 
shear zone.  
 
Petrology of the mylonites! 
Protomylonites and mylonites of the Mtilikwe shear zone are composed of high-
temperature mineral assemblages including quartz-plagioclase-biotite-ortho and 
clinopyroxene in enderbitic rocks; quartz-alkali feldspar (microcline and orthoclase)-
plagioclase-biotite-ortho- and clinopyroxene in felsic granulites of probably chamockitic 
origin; and quartz-alkali feld- spar (microcline and orthoclase)-plagioclase- biotite-garnet- 
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sillimanite in paragneisses. Zircon, apatite, ilmenite and rutile are common accessory 
minerals in most samples. Texturally, the protomylonites and mylonites!of the Mtilikwe 
shear zone are characterized by extensive dynamic recrystallization of almost all mineral 
components, which results in the typically finer grain size of the shear zone rocks 
compared to the surrounding, massive charnoenderbites. Quartz forms several centimetre 
long ribbons that define the mylonitic foliation. Alkali feldspar and plagioclase commonly 
occur as augen-shaped mantled porphyroclasts, but they may also be pervasively 
recrystallized forming composite feldspar ribbons that alternate with quartz ribbons and 
thereby imparting a foliation-parallel compositional banding to the mylonites. Garnet 
appears mainly subrounded and fractured. The fractures are filled by quartz, feldspar and 
biotite of the main mineral assemblage indicating that fracturing occurred during the high-
temperature and overall ductile deformation. Orthopyroxene is only observed in enderbitic 
protoliths. It commonly displays a prominent undulose extinction and marginal 
recrystallization into smaller aggregates. The fine-grained, recrystallized orthopyroxene 
aggregates are locally replaced by biotite. Overall, there is little evidence of retrogression 
of the rocks. Minor sericite is clearly post-kinematic and can be seen to replace feldspars 
along cleavage planes. In summary, the extensive dynamic recrystallization of almost all 
mineral components and the high-grade mineral parageneses preserved in the mylonites 
suggest that normal shearing along the Mtilikwe shear zone has occurred!close to or 
slightly post-peak metamorphic granulite-facies conditions.! 
 

 
 
Fig. 6: Extension microfractures (arrows) in garnet porphyroclasts, inclined to the foliation 
to indicate a dextral shear sense. Specimens from Rupati Pools outcrop. 

a) Parallel alignment occurs between several porphyroclasts. Plane polarized light. 
b) Microfracture fillings comprise biotite, quartz and Kfeldspar. Quartz and K-Feldspar 

define the mylonitic foliation around the garnet porphyroclast. SEM. 
 
Kinematic indicators. 
!Macroscopic shear sense indicators along the Mtilikwe shear zone are relatively rare and 
are virtually restricted to relatively coarse-grained rocks such as mylonitized pegmatites. 
On a microscopic scale, however, shear sense indicators are common, including sigma- 
and delta-clasts, S-C and S-C' fabrics. Twenty orientated thin sections were studied, taken 
along the strike extent of the Mtilikwe shear zone. Kinematic indicators in all sections 
consistently point to a normal, south-side down sense of shear. There was no evidence for 
a reverse, top-to-the-NNW sense of shear that commonly characterizes mylonites in the 
NMZ. A distinctive possible shear sense indicator!was observed from the orientation of 
extension microfractures within the garnet porphyroclasts of the mylonites (Fig. 6). These 
have a very consistent preferred orientation relative to the mylonitic foliation, inclined at 
40-50 ~ to the foliation towards the shortening quadrant of normal sense shearing 
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established independently by other criteria. A simple interpretation of these microfractures 
is that they are tensile fractures formed during normal simple shear. 
 
Discussion! 
The interpretation of the structural data presented here depends critically on whether the 
structures are still in approximately the same orientation in which they were formed. This 
can be confirmed by the observation that the Great Dyke and its satellites intruded the 
Northern Marginal Zone in the late Archaean, yet they are not deformed or rotated 
(Blenkinsop et al., 2005). The significance of this observation can be extrapolated along 
strike to the study area because the gneissose structure in the study area has the same 
dip as generally observed throughout the 450 km length and 60 km width of the NMZ (Fig. 
2).  
 
Geochronological constraints (Blenkinsop &!Frei 1996), high-grade metamorphic mineral 
parageneses and deformation textures recorded in mylonites of the Mtilikwe shear zone all 
indicate that normal, top-to-the-S shearing occur- red approximately synchronous with the 
late Archaean, overall contractional deformation in the NMZ at c. 2.6 Ga. Significantly, the 
planar and linear fabrics of the Mtilikwe shear zone are parallel to and virtually 
indistinguishable from the steep regional gneissose structures and downdip linear fabrics 
that characterize the reverse- and thrust-sense shear zones throughout!the NMZ. The 
normal shear sense can only be seen at the outcrop scale in the few coarse layers, and is 
difficult to find in outcrop even in very well-exposed areas such as the platform in the 
Mtilikwe river. This means that normal-sense shear may be more widespread in the NMZ 
than hitherto recognized. Two important features need to be considered!when discussing 
the syn- to late-collisional evolution of the NMZ. First, a substantial amount of crustal 
thickening in the NMZ was achieved by magmatic intra- and underplating that occurred 
over a protracted period of over 100 Ma, between c. 2.7 and 2.6 Ga (e.g. Berger et al. 
1995) and late Archaean geothermal gradients were very high due to the anomalously 
high radiogenic heat production in the NMZ (Kramers et al. 2001). Secondly, magmatic 
accretion occurred during N-S crustal shortening (e.g. Ridley 1992; Rollinson & Blenkinsop 
1995; Berger et al. 1995).  
 
The crustal strength must have been low throughout the evolution of the NMZ and it 
seems unlikely that this hot and rheologically weak crustal section could have supported 
large vertical loads due to tectonic thickening. Any vertical tectonic loading of the NMZ 
during the late Archaean NNW-directed crustal shortening was likely to have been 
compensated for almost instantaneously. Notably, normal sense shearing along the 
Mtilikwe shear zone is not a post- collisional feature, but is synchronous with the main 
phase of crustal thickening. Thus, significant tectonic overthickening and subsequent 
thermal equilibration as some of the main prerequisites for regional-scale, extensional 
collapse are unlikely to have occurred in the NMZ. This observation is consistent with 
Marshak's (1999) suggestion that Archaean orogens were probably characterized by 
relatively low topographic relief.! 
 
While late orogenic events in modern orogens!appear to involve extensional collapse and 
the formation of subhorizontal fabrics in the mid- lower crust, the latest events in the NMZ 
were concurrent thrusting on predominantly low- angle structures and normal faulting on 
steep structures. The bulk strain accommodated by the shear systems and the pervasive, 
subvertical fabrics and stretching lineations is NNW horizontal shortening and vertical 
extension. Several possibilities exist to explain this tectonic scenario. A transpressional 
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regime with a high ratio of horizontal shortening to wrench ('pure shear dominated 
transpression'; Tikoff & Teyssier 1994) could account for the vertical stretch (e.g. Pelletier 
et al. 2002). However, there is no evidence for a wrench component to the deformation, or 
indeed for any orogen parallel transport. The dextral transpression seen in the Triangle 
Shear zone on the southern margin of the NMZ occurred 500 Ma later than the Archaean 
tectonics discussed here (Kamber et al. 1995). Isostatic readjustment following crustal 
underplating might explain the observations, but the likely locus of maximum under- 
plating is to the south of the study area, where the highest grade metamorphic conditions 
were reached. The observed normal sense of shear on the Mtilikwe shear zone is the 
opposite of that expected for such isostatic readjustment. Horizontal gradients in vertical 
stretching could account for the concurrent operation of the thrusts and normal faults if the 
vertical stretch!was concentrated in the area between the Mtilikwe shear zone and the 
North Limpopo Thrust Zone. Although this is possible, there is no obvious intensification of 
the fabric in this area to suggest a localization of strain.  
 
Subvertical extrusion of a crustal segment!during convergence is a satisfactory account for 
all the kinematic observations (Fig. 7). A mechanical explanation for this behaviour might 
be sought in the buttressing effect of the Zimbabwe craton during convergence and the 
specific crustal rheology of the NMZ, combined with the effect of the anisotropy induced by 
the gneissic fabric, which dips generally steeply to the south in the vicinity of the Mtilikwe 
shear zone.  
 
A clear result from this study is that the late orogenic evolution of the NMZ did not involve 
any of the structures that are considered typical of gravitational collapse in modern 
orogens. The normal faulting on the steeply dipping MSZ is not analogous to normal 
faulting on, for example, the South Tibetan Detachment Fault, which dips at a shallow 
angle (Burchfiel et al. 1992). The steep fabrics in the NMZ contrast with the subhorizontal 
attitude expected for midcrustal collapse features, and particularly with Marshak' s (1999) 
hypothesis that Archaean orogens might contain belts of subhorizontal fabrics. Horizontal 
shortening apparently persisted throughout the orogenic evolution not only in this part of 
the NMZ but elsewhere, as seen in the pervasive steeply dipping fabrics. Thus the 
shortening noted in the study area is not simply a manifestation of gravitational collapse in 
the adjacent more internal part of the Limpopo Belt.  
 
The lack of typical collapse features in the!NMZ may be due to a lack of overthickening by 
thrusting, as described above. Choukroune et al. (1995) suggested that a lack of thrust 
overthickening, and the great importance of magmatic processes in crustal thickening, 
were characteristic of Archaean orogeny, and this contrast with modem orogenies 
represented a secular change in orogenic style (cf. Chardon et al. 1998, 2002). Given the 
magmatically accreted, juvenile nature of the crust and the particularly high geothermal 
gradient that must have prevailed in the NMZ during the late Archaean (Kramers et al. 
2001), the lack of evidence for gravitational collapse is one of the most distinctive aspects 
of Limpopo Belt geology. The example of the NMZ indicates that specific boundary 
conditions allowed for the N-S shortening to be accommodated by vertical extrusion of the 
hot and ductile crustal section without tectonic overthickening, and adds support to the 
concept that Archaean orogenesis was, in many aspects, different from modern 
orogeny.!Conclusions!Late Archaean tectonics of the Limpopo Belt in the northern part of 
the Northern Marginal Zone involved horizontal shortening, vertical extension and 
subvertical extrusion of crust between gently dipping thrusts and a steeply dipping normal 
shear zone. The extrusion may have been controlled by the buttressing effect of the 
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Zimbabwe craton and the steeply dipping gneissic fabrics of the NMZ. Normal shear 
sense is observed on careful scrutiny of steeply dipping fabrics that are parallel to the 
ubiquitous gneissic structure. Previous research may not have detected such normal 
sense structures, because they utilize fabric that is conventionally interpreted as due to 
thrusting with horizontal shortening. The late orogenic fabrics and tectonics of the NMZ 
are fundamentally different from features that characterize gravitational collapse in the late 
evolution of modern orogens. The lack of gravitational collapse may have been because 
the crust was not overthickened by thrusting; the latter may distinguish modem from 
Archaean orogenesis.! 
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10. Mafic Granulite 
 
Aim: to examine the intrusive/deformation history of a mafic intrusion in the NMZ. 
Description: Equigranular mafic granulite. Typically this rock occurs as narrow elongate 
bodies with dimensions 10 to 20m wide and 200m long within granulite gneisses (Figure 
2). There is little mineralogical variation apart from weak cm-scale banding due to variable 
proportions of plagioclase. Hornblende occurs as 1 to 2mm crystals with orthopyroxene 
and plagioclase symplectites on grain boundary edges. These symplectites show a 
prograde reaction that can be represented as:!Hornblende + Quartz ➝ Plagioclase + 
Orthopyroxene + H2O.!Biotite (1 to 2mm grains) is preferentially aligned in micro-shear 
zones 0.3mm wide that define a penetrative fabric. Two generations of biotite exist. The 
first generation is green-brown and defines the regional fabric. The second generation is 
red-brown and occurs as an alteration product from the reaction:!Orthopyroxene + 
Hornblende + Plagioclase + Fluid ➝ Biotite. !The above hydration reaction occurs in zones 
that imply K-metasomatism (Kamber and Biino, 1995). The reaction represents retrograde 
metamorphism in lower amphibolite facies to upper greenschist facies after granulite 
facies conditions.!An elliptical body of massive mafic granulite occurs in the western 
portion of the study area with dimensions 500m by 600m (Figure 2). These rocks have an 
equigranular texture of 2 to 3mm grains of orthopyroxene and hornblende in undeformed 
portions of the rock, and a weak alignment of mafic minerals elsewhere. 
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